ترغب بنشر مسار تعليمي؟ اضغط هنا

Collapse and Revival of an Artificial Atom Coupled to a Structured Photonic Reservoir

72   0   0.0 ( 0 )
 نشر من قبل Oskar Painter J
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A structured electromagnetic reservoir can result in novel dynamics of quantum emitters. In particular, the reservoir can be tailored to have a memory of past interactions with emitters, in contrast to memory-less Markovian dynamics of typical open systems. In this Article, we investigate the non-Markovian dynamics of a superconducting qubit strongly coupled to a superconducting slow-light waveguide reservoir. Tuning the qubit into the spectral vicinity of the passband of this waveguide, we find non-exponential energy relaxation as well as substantial changes to the qubit emission rate. Further, upon addition of a reflective boundary to one end of the waveguide, we observe revivals in the qubit population on a timescale 30 times longer than the inverse of the qubits emission rate, corresponding to the round-trip travel time of an emitted photon. By tuning of the qubit-waveguide interaction strength, we probe a crossover between Markovian and non-Markovian qubit emission dynamics. These attributes allow for future studies of multi-qubit circuits coupled to structured reservoirs, in addition to constituting the necessary resources for generation of multiphoton highly entangled states.



قيم البحث

اقرأ أيضاً

Circuit quantum electrodynamics systems are typically built from resonators and two-level artificial atoms, but the use of multi-level artificial atoms instead can enable promising applications in quantum technology. Here we present an implementation of a Josephson junction circuit dedicated to operate as a V-shape artificial atom. Based on a concept of two internal degrees of freedom, the device consists of two transmon qubits coupled by an inductance. The Josephson nonlinearity introduces a strong diagonal coupling between the two degrees of freedom that finds applications in quantum non-demolition readout schemes, and in the realization of microwave cross-Kerr media based on superconducting circuits.
A single superconducting artificial atom provides a unique basis for coupling electromagnetic fields and photons hardly achieved with a natural atom. Bringing a pair of harmonic oscillators into resonance with transitions of the three-level atom conv erts atomic spontaneous processes into correlated emission dynamics. We demonstrate two-mode correlated emission lasing on harmonic oscillators coupled via the fully controllable three-level artificial atom. Correlation of two different color emissions reveals itself as equally narrowed linewiths and quench of their mutual phase-diffusion. The mutual linewidth is more than four orders of magnitude narrower than the Schawlow-Townes limit. The interference between the different color lasing fields demonstrates the two-mode fields are strongly correlated.
Heisenbergs uncertainty principle results in one of the strangest quantum behaviors: an oscillator can never truly be at rest. Even in its lowest energy state, at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. Resolving these fluctuations using linear position measurements is complicated by the fact that classical noise can masquerade as quantum noise. On the other hand, direct energy detection of the oscillator in its ground state makes it appear motionless. So how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. Exploiting a superconducting qubit as an artificial atom, we measure the photon/phonon-number distributions during these optomechanical interactions. This provides an essential non-linear resource to, first, verify the ground state preparation and second, reveal the quantum vacuum fluctuations of the macroscopic oscillators motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.
Emitters strongly coupled to a photonic crystal provide a powerful platform for realizing novel quantum light-matter interactions. Here we study the optical properties of a three-level artificial atomic chain coupled to a one-dimensional superconduct ing microwave photonic crystal. A sharp minimum-energy dip appears in the transmission spectrum of a weak input field, which reveals rich behavior of the long-range interactions arising from localized bound states. We find that the dip frequency scales linearly with both the number of the artificial atoms and the characteristic strength of the long-range interactions when the localization length of the bound state is sufficiently large. Motivated by this observation, we present a simple model to calculate the dip frequency with system parameters, which agrees well with the results from exact numerics for large localization lengths. We observe oscillation between bunching and antibunching in photon-photon correlation function of the output field. Furthermore, we find that the model remains valid even though the coupling strengths between the photonic crystal and artificial atoms are not exactly equal and the phases of external driving fields for the artificial atoms are different. Thus, we may infer valuable system parameters from the dip location in the transmission spectrum, which provides an important measuring tool for the superconducting microwave photonic crystal systems in experiment. With remarkable advances to couple artificial atoms with microwave photonic crystals, our proposal may be experimentally realized in currently available superconducting circuits.
Quantum information can be stored in micromechanical resonators, encoded as quanta of vibration known as phonons. The vibrational motion is then restricted to the stationary eigenmodes of the resonator, which thus serves as local storage for phonons. In contrast, we couple propagating phonons to an artificial atom in the quantum regime, and reproduce findings from quantum optics with sound taking over the role of light. Our results highlight the similarities between phonons and photons, but also point to new opportunities arising from the unique features of quantum mechanical sound. The low propagation speed of phonons should enable new dynamic schemes for processing quantum information, and the short wavelength allows regimes of atomic physics to be explored which cannot be reached in photonic systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا