ﻻ يوجد ملخص باللغة العربية
Heisenbergs uncertainty principle results in one of the strangest quantum behaviors: an oscillator can never truly be at rest. Even in its lowest energy state, at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. Resolving these fluctuations using linear position measurements is complicated by the fact that classical noise can masquerade as quantum noise. On the other hand, direct energy detection of the oscillator in its ground state makes it appear motionless. So how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. Exploiting a superconducting qubit as an artificial atom, we measure the photon/phonon-number distributions during these optomechanical interactions. This provides an essential non-linear resource to, first, verify the ground state preparation and second, reveal the quantum vacuum fluctuations of the macroscopic oscillators motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a br
Single photon detection is a requisite technique in quantum-optics experiments in both the optical and the microwave domains. However, the energy of microwave quanta are four to five orders of magnitude less than their optical counterpart, making the
Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, emph{e.g.}, in the Casimir effects and the lifetimes of
Over the past few decades, experimental tests of Bell-type inequalities have been at the forefront of understanding quantum mechanics and its implications. These strong bounds on specific measurements on a physical system originate from some of the m
A structured electromagnetic reservoir can result in novel dynamics of quantum emitters. In particular, the reservoir can be tailored to have a memory of past interactions with emitters, in contrast to memory-less Markovian dynamics of typical open s