ﻻ يوجد ملخص باللغة العربية
The advent of new time domain surveys and the imminent increase in astronomical data expose the shortcomings in traditional time series analysis (such as power spectra analysis) in characterising the abundantly varied, complex and stochastic light curves of Active Galactic Nuclei (AGN). Recent applications of novel methods from non-linear dynamics have shown promise in characterising higher modes of variability and time-scales in AGN. Recurrence analysis in particular can provide complementary information about characteristic time-scales revealed by other methods, as well as probe the nature of the underlying physics in these objects. Recurrence analysis was developed to study the recurrences of dynamical trajectories in phase space, which can be constructed from one-dimensional time series such as light curves. We apply the methods of recurrence analysis to two optical light curves of Kepler-monitored AGN. We confirm the detection and period of an optical quasi-periodic oscillation in one AGN, and confirm multiple other time-scales recovered from other methods ranging from 5 days to 60 days in both objects. We detect regions in the light curves that deviate from regularity, provide evidence of determinism and non-linearity in the mechanisms underlying one light curve (KIC 9650712), and determine a linear stochastic process recovers the dominant variability in the other light curve (Zwicky 229--015). We discuss possible underlying processes driving the dynamics of the light curves and their diverse classes of variability.
Here we present the evidence for periodicity of an optical emission detected in several AGN. Significant periodicity is found in light curves and radial velocity curves. We discuss possible mechanisms that could produce such periodic variability and
The high quality light curves of Kepler space telescope make it possible to analyze the optical variability of AGNs with an unprecedented time resolution. Studying the asymmetry in variations could give independent constraints on the physical models
[Abbreviated] We search for scaling relations between the fundamental AGN parameters and rest-frame UV/optical variability properties for a sample of $sim$90 X-ray selected AGNs covering a wide redshift range from the XMM-COSMOS survey, with optical
A recent analysis of high precision photometry obtained using the Kepler spacecraft has revealed two surprising discoveries: (1) over 860 main sequence A-type stars -- approximately 40% of those identified in the Kepler field -- exhibit periodic vari
Synchrotron self-absorption in active galactic nuclei (AGN) jets manifests itself as a time delay between flares observed at high and low radio frequencies. It is also responsible for the observing frequency dependent change in size and position of t