ﻻ يوجد ملخص باللغة العربية
Discrete time trawl processes constitute a large class of time series parameterized by a trawl sequence (a j) j$in$N and defined though a sequence of independent and identically distributed (i.i.d.) copies of a continuous time process ($gamma$(t)) t$in$R called the seed process. They provide a general framework for modeling linear or non-linear long range dependent time series. We investigate the spectral estimation, either pointwise or broadband, of long range dependent discrete-time trawl processes. The difficulty arising from the variety of seed processes and of trawl sequences is twofold. First, the spectral density may take different forms, often including smooth additive correction terms. Second, trawl processes with similar spectral densities may exhibit very different statistical behaviors. We prove the consistency of our estimators under very general conditions and we show that a wide class of trawl processes satisfy them. This is done in particular by introducing a weighted weak dependence index that can be of independent interest. The broadband spectral estimator includes an estimator of the long memory parameter. We complete this work with numerical experiments to evaluate the finite sample size performance of this estimator for various integer valued discrete time trawl processes.
We discuss parametric estimation of a degenerate diffusion system from time-discrete observations. The first component of the degenerate diffusion system has a parameter $theta_1$ in a non-degenerate diffusion coefficient and a parameter $theta_2$ in
We consider stationary processes with long memory which are non-Gaussian and represented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients and study the asymptotic behavior of the sum of their squares si
This article is concerned with the spectral behavior of $p$-dimensional linear processes in the moderately high-dimensional case when both dimensionality $p$ and sample size $n$ tend to infinity so that $p/nto0$. It is shown that, under an appropriat
In this paper we study covariance estimation with missing data. We consider missing data mechanisms that can be independent of the data, or have a time varying dependency. Additionally, observed variables may have arbitrary (non uniform) and dependen
Various nonparametric approaches for Bayesian spectral density estimation of stationary time series have been suggested in the literature, mostly based on the Whittle likelihood approximation. A generalization of this approximation has been proposed