ترغب بنشر مسار تعليمي؟ اضغط هنا

Covariance Matrix Estimation with Non Uniform and Data Dependent Missing Observations

136   0   0.0 ( 0 )
 نشر من قبل Eduardo Pavez
 تاريخ النشر 2019
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study covariance estimation with missing data. We consider missing data mechanisms that can be independent of the data, or have a time varying dependency. Additionally, observed variables may have arbitrary (non uniform) and dependent observation probabilities. For each mechanism, we construct an unbiased estimator and obtain bounds for the expected value of their estimation error in operator norm. Our bounds are equivalent, up to constant and logarithmic factors, to state of the art bounds for complete and uniform missing observations. Furthermore, for the more general non uniform and dependent cases, the proposed bounds are new or improve upon previous results. Our error estimates depend on quantities we call scaled effective rank, which generalize the effective rank to account for missing observations. All the estimators studied in this work have the same asymptotic convergence rate (up to logarithmic factors).



قيم البحث

اقرأ أيضاً

443 - Clifford Lam , Jianqing Fan 2009
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that ar e zero are actually estimated as zero with probability tending to one. Depending on the case of applications, sparsity priori may occur on the covariance matrix, its inverse or its Cholesky decomposition. We study these three sparsity exploration problems under a unified framework with a general penalty function. We show that the rates of convergence for these problems under the Frobenius norm are of order $(s_nlog p_n/n)^{1/2}$, where $s_n$ is the number of nonzero elements, $p_n$ is the size of the covariance matrix and $n$ is the sample size. This explicitly spells out the contribution of high-dimensionality is merely of a logarithmic factor. The conditions on the rate with which the tuning parameter $lambda_n$ goes to 0 have been made explicit and compared under different penalties. As a result, for the $L_1$-penalty, to guarantee the sparsistency and optimal rate of convergence, the number of nonzero elements should be small: $s_n=O(p_n)$ at most, among $O(p_n^2)$ parameters, for estimating sparse covariance or correlation matrix, sparse precision or inverse correlation matrix or sparse Cholesky factor, where $s_n$ is the number of the nonzero elements on the off-diagonal entries. On the other hand, using the SCAD or hard-thresholding penalty functions, there is no such a restriction.
Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the in-homogeneous random graph model with missing observati ons. Using the Stochastic Block Model as a parametric proxy, we bound the risk of the maximum likelihood estimator of network connections probabilities , and show that it is minimax optimal. When risk is measured in Frobenius norm, no estimator running in polynomial time has been shown to attain the minimax optimal rate of convergence for this problem. Thus, maximum likelihood estimation is of particular interest as computationally efficient approximations to it have been proposed in the literature and are often used in practice.
114 - Aude Sportisse 2019
Missing Not At Random (MNAR) values lead to significant biases in the data, since the probability of missingness depends on the unobserved values.They are not ignorable in the sense that they often require defining a model for the missing data mechan ism, which makes inference or imputation tasks more complex. Furthermore, this implies a strong textit{a priori} on the parametric form of the distribution.However, some works have obtained guarantees on the estimation of parameters in the presence of MNAR data, without specifying the distribution of missing data citep{mohan2018estimation, tang2003analysis}. This is very useful in practice, but is limited to simple cases such as self-masked MNAR values in data generated according to linear regression models.We continue this line of research, but extend it to a more general MNAR mechanism, in a more general model of the probabilistic principal component analysis (PPCA), textit{i.e.}, a low-rank model with random effects. We prove identifiability of the PPCA parameters. We then propose an estimation of the loading coefficients and a data imputation method. They are based on estimators of means, variances and covariances of missing variables, for which consistency is discussed. These estimators have the great advantage of being calculated using only the observed data, leveraging the underlying low-rank structure of the data. We illustrate the relevance of the method with numerical experiments on synthetic data and also on real data collected from a medical register.
The consistency and asymptotic normality of the spatial sign covariance matrix with unknown location are shown. Simulations illustrate the different asymptotic behavior when using the mean and the spatial median as location estimator.
Matrix factorization (MF) has been widely used to discover the low-rank structure and to predict the missing entries of data matrix. In many real-world learning systems, the data matrix can be very high-dimensional but sparse. This poses an imbalance d learning problem, since the scale of missing entries is usually much larger than that of observed entries, but they cannot be ignored due to the valuable negative signal. For efficiency concern, existing work typically applies a uniform weight on missing entries to allow a fast learning algorithm. However, this simplification will decrease modeling fidelity, resulting in suboptimal performance for downstream applications. In this work, we weight the missing data non-uniformly, and more generically, we allow any weighting strategy on the missing data. To address the efficiency challenge, we propose a fast learning method, for which the time complexity is determined by the number of observed entries in the data matrix, rather than the matrix size. The key idea is two-fold: 1) we apply truncated SVD on the weight matrix to get a more compact representation of the weights, and 2) we learn MF parameters with element-wise alternating least squares (eALS) and memorize the key intermediate variables to avoid repeating computations that are unnecessary. We conduct extensive experiments on two recommendation benchmarks, demonstrating the correctness, efficiency, and effectiveness of our fast eALS method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا