ﻻ يوجد ملخص باللغة العربية
In this paper we study covariance estimation with missing data. We consider missing data mechanisms that can be independent of the data, or have a time varying dependency. Additionally, observed variables may have arbitrary (non uniform) and dependent observation probabilities. For each mechanism, we construct an unbiased estimator and obtain bounds for the expected value of their estimation error in operator norm. Our bounds are equivalent, up to constant and logarithmic factors, to state of the art bounds for complete and uniform missing observations. Furthermore, for the more general non uniform and dependent cases, the proposed bounds are new or improve upon previous results. Our error estimates depend on quantities we call scaled effective rank, which generalize the effective rank to account for missing observations. All the estimators studied in this work have the same asymptotic convergence rate (up to logarithmic factors).
This paper studies the sparsistency and rates of convergence for estimating sparse covariance and precision matrices based on penalized likelihood with nonconvex penalty functions. Here, sparsistency refers to the property that all parameters that ar
Estimating the matrix of connections probabilities is one of the key questions when studying sparse networks. In this work, we consider networks generated under the sparse graphon model and the in-homogeneous random graph model with missing observati
Missing Not At Random (MNAR) values lead to significant biases in the data, since the probability of missingness depends on the unobserved values.They are not ignorable in the sense that they often require defining a model for the missing data mechan
The consistency and asymptotic normality of the spatial sign covariance matrix with unknown location are shown. Simulations illustrate the different asymptotic behavior when using the mean and the spatial median as location estimator.
Matrix factorization (MF) has been widely used to discover the low-rank structure and to predict the missing entries of data matrix. In many real-world learning systems, the data matrix can be very high-dimensional but sparse. This poses an imbalance