ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-gravitational Force Calculation of Second Order Accuracy Using Multigrid Method on Nested Grids

57   0   0.0 ( 0 )
 نشر من قبل Hsiang-Hsu Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a simple and effective multigrid-based Poisson solver of second-order accuracy in both gravitational potential and forces in terms of the one, two and infinity norms. The method is especially suitable for numerical simulations using nested mesh refinement. The Poisson equation is solved from coarse to fine levels using a one-way interface scheme. We introduce anti-symmetrically linear interpolation for evaluating the boundary conditions across the multigrid hierarchy. The spurious forces commonly observed at the interfaces between refinement levels are effectively suppressed. We validate the method using two- and three-dimensional density-force pairs that are sufficiently smooth for probing the order of accuracy.



قيم البحث

اقرأ أيضاً

We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second order accuracy using numerical simulations. The proposed method is accurate, computationally fast and has the potential to be applied to the studies of planetary migration and the gaseous morphology of disk galaxies.
Investigating the evolution of disk galaxies and the dynamics of proto-stellar disks can involve the use of both a hydrodynamical and a Poisson solver. These systems are usually approximated as infinitesimally thin disks using two- dimensional Cartes ian or polar coordinates. In Cartesian coordinates, the calcu- lations of the hydrodynamics and self-gravitational forces are relatively straight- forward for attaining second order accuracy. However, in polar coordinates, a second order calculation of self-gravitational forces is required for matching the second order accuracy of hydrodynamical schemes. We present a direct algorithm for calculating self-gravitational forces with second order accuracy without artifi- cial boundary conditions. The Poisson integral in polar coordinates is expressed in a convolution form and the corresponding numerical complexity is nearly lin- ear using a fast Fourier transform. Examples with analytic solutions are used to verify that the truncated error of this algorithm is of second order. The kernel integral around the singularity is applied to modify the particle method. The use of a softening length is avoided and the accuracy of the particle method is significantly improved.
Self-gravitational force calculation for infinitesimally thin disks is important for studies on the evolution of galactic and protoplanetary disks. Although high-order methods have been developed for hydrodynamic and magneto-hydrodynamic equations, h igh-order improvement is desirable for solving self-gravitational forces for thin disks. In this work, we present a new numerical algorithm that is of linear complexity and of high-order accuracy. This approach is fast since the force calculation is associated with a convolution form, and the fast calculation can be achieved using Fast Fourier Transform. The nice properties, such as the finite supports and smoothness, of B-splines are exploited to stably interpolate a surface density and achieve a high-order accuracy in forces. Moreover, if the mass distribution of interest is exclusively confined within a calculation domain, the method does not require artificial boundary values to be specified before the force calculation. To validate the proposed algorithm, a series of numerical tests, ranging from 1st- to 3rd-order implementations, are performed and the results are compared with analytic expressions derived for 3rd- and 4th-order generalized Maclaurin disks. We conclude that the improvement on the numerical accuracy is significant with the order of the method, with only little increase of the complexity of the method.
Self-force theory is the leading method of modeling extreme-mass-ratio inspirals (EMRIs), key sources for the gravitational-wave detector LISA. It is well known that for an accurate EMRI model, second-order self-force effects are critical, but calcul ations of these effects have been beset by obstacles. In this letter we present the first implementation of a complete scheme for second-order self-force computations, specialized to the case of quasicircular orbits about a Schwarzschild black hole. As a demonstration, we calculate the gravitational binding energy of these binaries.
This work discusses the application of an affine reconstructed nodal DG method for unstructured grids of triangles. Solving the diffusion terms in the DG method is non-trivial due to the solution representations being piecewise continuous. Hence, the diffusive flux is not defined on the interface of elements. The proposed numerical approach reconstructs a smooth solution in a parallelogram that is enclosed by the quadrilateral formed by two adjacent triangle elements. The interface between these two triangles is the diagonal of the enclosed parallelogram. Similar to triangles, the mapping of parallelograms from a physical domain to a reference domain is an affine mapping, which is necessary for an accurate and efficient implementation of the numerical algorithm. Thus, all computations can still be performed on the reference domain, which promotes efficiency in computation and storage. This reconstruction does not make assumptions on choice of polynomial basis. Reconstructed DG algorithms have previously been developed for modal implementations of the convection-diffusion equations. However, to the best of the authors knowledge, this is the first practical guideline that has been proposed for applying the reconstructed algorithm on a nodal discontinuous Galerkin method with a focus on accuracy and efficiency. The algorithm is demonstrated on a number of benchmark cases as well as a challenging substantive problem in HED hydrodynamics with highly disparate diffusion parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا