ترغب بنشر مسار تعليمي؟ اضغط هنا

An affine reconstructed algorithm for diffusion on triangular grids using the nodal discontinuous Galerkin method

97   0   0.0 ( 0 )
 نشر من قبل Yang Song
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work discusses the application of an affine reconstructed nodal DG method for unstructured grids of triangles. Solving the diffusion terms in the DG method is non-trivial due to the solution representations being piecewise continuous. Hence, the diffusive flux is not defined on the interface of elements. The proposed numerical approach reconstructs a smooth solution in a parallelogram that is enclosed by the quadrilateral formed by two adjacent triangle elements. The interface between these two triangles is the diagonal of the enclosed parallelogram. Similar to triangles, the mapping of parallelograms from a physical domain to a reference domain is an affine mapping, which is necessary for an accurate and efficient implementation of the numerical algorithm. Thus, all computations can still be performed on the reference domain, which promotes efficiency in computation and storage. This reconstruction does not make assumptions on choice of polynomial basis. Reconstructed DG algorithms have previously been developed for modal implementations of the convection-diffusion equations. However, to the best of the authors knowledge, this is the first practical guideline that has been proposed for applying the reconstructed algorithm on a nodal discontinuous Galerkin method with a focus on accuracy and efficiency. The algorithm is demonstrated on a number of benchmark cases as well as a challenging substantive problem in HED hydrodynamics with highly disparate diffusion parameters.

قيم البحث

اقرأ أيضاً

Two methods for solid body representation in flow simulations available in the Pencil Code are the immersed boundary method and overset grids. These methods are quite different in terms of computational cost, flexibility and numerical accuracy. We pr esent here an investigation of the use of the different methods with the purpose of assessing their strengths and weaknesses. At present, the overset grid method in the Pencil Code can only be used for representing cylinders in the flow. For this task it surpasses the immersed boundary method in yielding highly accurate solutions at moderate computational costs. This is partly due to local grid stretching and a body-conformal grid, and partly due to the possibility of working with local time step restrictions on different grids. The immersed boundary method makes up the lack of computational efficiency with flexibility in regards to application to complex geometries, due to a recent extension of the method that allows our implementation of it to represent arbitrarily shaped objects in the flow.
The mass flow rate of Poiseuille flow of rarefied gas through long ducts of two-dimensional cross-sections with arbitrary shape are critical in the pore-network modeling of gas transport in porous media. In this paper, for the first time, the high-or der hybridizable discontinuous Galerkin (HDG) method is used to find the steady-state solution of the linearized Bhatnagar-Gross-Krook equation on two-dimensional triangular meshes. The velocity distribution function and its traces are approximated in the piecewise polynomial space (of degree up to 4) on the triangular meshes and the mesh skeletons, respectively. By employing a numerical flux that is derived from the first-order upwind scheme and imposing its continuity on the mesh skeletons, global systems for unknown traces are obtained with a few coupled degrees of freedom. To achieve fast convergence to the steady-state solution, a diffusion-type equation for flow velocity that is asymptotic-preserving into the fluid dynamic limit is solved by the HDG simultaneously, on the same meshes. The proposed HDG-synthetic iterative scheme is proved to be accurate and efficient. Specifically, for flows in the near-continuum regime, numerical simulations have shown that, to achieve the same level of accuracy, our scheme could be faster than the conventional iterative scheme by two orders of magnitude, while it is faster than the synthetic iterative scheme based on the finite difference discretization in the spatial space by one order of magnitude. The HDG-synthetic iterative scheme is ready to be extended to simulate rarefied gas mixtures and the Boltzmann collision operator.
In the spirit of making high-order discontinuous Galerkin (DG) methods more competitive, researchers have developed the hybridized DG methods, a class of discontinuous Galerkin methods that generalizes the Hybridizable DG (HDG), the Embedded DG (EDG) and the Interior Embedded DG (IEDG) methods. These methods are amenable to hybridization (static condensation) and thus to more computationally efficient implementations. Like other high-order DG methods, however, they may suffer from numerical stability issues in under-resolved fluid flow simulations. In this spirit, we introduce the hybridized DG methods for the compressible Euler and Navier-Stokes equations in entropy variables. Under a suitable choice of the stabilization matrix, the scheme can be shown to be entropy stable and satisfy the Second Law of Thermodynamics in an integral sense. The performance and robustness of the proposed family of schemes are illustrated through a series of steady and unsteady flow problems in subsonic, transonic, and supersonic regimes. The hybridized DG methods in entropy variables show the optimal accuracy order given by the polynomial approximation space, and are significantly superior to their counterparts in conservation variables in terms of stability and robustness, particularly for under-resolved and shock flows.
A numerical approach for solving evolutionary partial differential equations in two and three space dimensions on block-based adaptive grids is presented. The numerical discretization is based on high-order, central finite-differences and explicit ti me integration. Grid refinement and coarsening are triggered by multiresolution analysis, i.e. thresholding of wavelet coefficients, which allow controlling the precision of the adaptive approximation of the solution with respect to uniform grid computations. The implementation of the scheme is fully parallel using MPI with a hybrid data structure. Load balancing relies on space filling curves techniques. Validation tests for 2D advection equations allow to assess the precision and performance of the developed code. Computations of the compressible Navier-Stokes equations for a temporally developing 2D mixing layer illustrate the properties of the code for nonlinear multi-scale problems. The code is open source.
Discontinuous Galerkin finite element schemes exhibit attractive features for accurate large-scale wave-propagation simulations on modern parallel architectures. For many applications, these schemes must be coupled with non-reflective boundary treatm ents to limit the size of the computational domain without losing accuracy or computational efficiency, which remains a challenging task. In this paper, we present a combination of a nodal discontinuous Galerkin method with high-order absorbing boundary conditions (HABCs) for cuboidal computational domains. Compatibility conditions are derived for HABCs intersecting at the edges and the corners of a cuboidal domain. We propose a GPU implementation of the computational procedure, which results in a multidimensional solver with equations to be solved on 0D, 1D, 2D and 3D spatial regions. Numerical results demonstrate both the accuracy and the computational efficiency of our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا