ﻻ يوجد ملخص باللغة العربية
The crystals for a finite-dimensional complex reductive Lie algebra $mathfrak{g}$ encode the structure of its representations, yet can also reveal surprising new structure of their own. We study the cactus group $C_{mathfrak{g}}$, constructed using the Dynkin diagram of $mathfrak{g}$, and its combinatorial action on any $mathfrak{g}$-crystal via Sch{u}tzenberger involutions. We compare this action with that of the Berenstein-Kirillov group on Gelfand-Tsetlin patterns. Henriques and Kamnitzer define an action of $C_n=C_{mathfrak{gl}_n}$ on $n$-tensor products of $mathfrak{g}$-crystals, for any $mathfrak{g}$ as above. We discuss the crystal corresponding to the $mathfrak{gl}_n times mathfrak{gl}_m$-representation $Lambda^N(mathbb{C}^n otimes mathbb{C}^m),$ derive skew Howe duality on the crystal level and show that the two types of cactus group actions agree in this setting. A future application of this result is discussed in studying two families of maximal commutative subalgebras of the universal enveloping algebra, the shift of argument and Gaudin algebras, where an algebraically constructed monodromy action matches that of the cactus group.
Let $mathfrak{g}$ be a semisimple simply-laced Lie algebra of finite type. Let $mathcal{C}$ be an abelian categorical representation of the quantum group $U_q(mathfrak{g})$ categorifying an integrable representation $V$. The Artin braid group $B$ of
We formulate a general super duality conjecture on connections between parabolic categories O of modules over Lie superalgebras and Lie algebras of type A, based on a Fock space formalism of their Kazhdan-Lusztig theories which was initiated by Brund
Using Howe duality we compute explicitly Kostant-type homology groups for a wide class of representations of the infinite-dimensional Lie superalgebra $hat{frak{gl}}_{infty|infty}$ and its classical subalgebras at positive integral levels. We also ob
Fix a semisimple Lie algebra g. Gaudin algebras are commutative algebras acting on tensor product multiplicity spaces for g-representations. These algebras depend on a parameter which is a point in the Deligne-Mumford moduli space of marked stable ge
We study the relation between quantum affine algebras of type A and Grassmannian cluster algebras. Hernandez and Leclerc described an isomorphism from the Grothendieck ring of a certain subcategory $mathcal{C}_{ell}$ of $U_q(hat{mathfrak{sl}_n})$-mod