ﻻ يوجد ملخص باللغة العربية
Convolutional Neural Networks (CNNs) have shown strong promise for analyzing scientific data from many domains including particle imaging detectors. However, the challenge of choosing the appropriate network architecture (depth, kernel shapes, activation functions, etc.) for specific applications and different data sets is still poorly understood. In this paper, we study the relationships between a CNNs architecture and its performance by proposing a systematic language that is useful for comparison between different CNNs architectures before training time. We characterize CNNs architecture by different attributes, and demonstrate that the attributes can be predictive of the networks performance in two specific computer vision-based physics problems -- event vertex finding and hadron multiplicity classification in the MINERvA experiment at Fermi National Accelerator Laboratory. In doing so, we extract several architectural attributes from optimized networks architecture for the physics problems, which are outputs of a model selection algorithm called Multi-node Evolutionary Neural Networks for Deep Learning (MENNDL). We use machine learning models to predict whether a network can perform better than a certain threshold accuracy before training. The models perform 16-20% better than random guessing. Additionally, we found an coefficient of determination of 0.966 for an Ordinary Least Squares model in a regression on accuracy over a large population of networks.
A technique named Feature Learning from Image Markers (FLIM) was recently proposed to estimate convolutional filters, with no backpropagation, from strokes drawn by a user on very few images (e.g., 1-3) per class, and demonstrated for coconut-tree im
We propose contextual convolution (CoConv) for visual recognition. CoConv is a direct replacement of the standard convolution, which is the core component of convolutional neural networks. CoConv is implicitly equipped with the capability of incorpor
In recent years graph neural network (GNN)-based approaches have become a popular strategy for processing point cloud data, regularly achieving state-of-the-art performance on a variety of tasks. To date, the research community has primarily focused
Convolutional Neural Networks (CNNs) have been proven to be extremely successful at solving computer vision tasks. State-of-the-art methods favor such deep network architectures for its accuracy performance, with the cost of having massive number of
Graph neural networks (GNN) represent an emerging line of deep learning models that operate on graph structures. It is becoming more and more popular due to its high accuracy achieved in many graph-related tasks. However, GNN is not as well understoo