ترغب بنشر مسار تعليمي؟ اضغط هنا

Front-end-Electronics for the SiPM-readout gaseous TPC for neutrinoless double beta decay search

87   0   0.0 ( 0 )
 نشر من قبل Kazuhiro Nakamura
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a dedicated front-end-electronics board for a high-pressure xenon gas time projection chamber for a neutrinoless double-beta decay search. The ionization signal is readout by detecting electroluminescence photons with SiPMs. The board readout the signal from 56~SiPMs through the DC-coupling and record the waveforms at 5 MS/s with a wide dynamic range up to 7,000 photons/200 ns. The SiPM bias voltages are provided by the board and can be adjusted for each SiPM. In order to calibrate and monitor the SiPM gain, additional auxiliary ADC measures 1 photon-equivalent dark current. The obtained performance satisfies the requirement for a neutrinoless double-beta decay search.

قيم البحث

اقرأ أيضاً

125 - Yuan Mei , Xiangming Sun , Nu Xu 2020
We propose a novel charge sensing concept for high-pressure Time Projection Chamber (TPC) to search for Neutrinoless Double-Beta Decay (NLDBD) with ton-scale isotope mass and beyond. A meter-sized plane, tiled with an array of CMOS integrated sensors called Topmetal that directly collect charge without gas avalanche gain, is to be deployed into a high-pressure gaseous TPC with working gases containing suitable NLDBD candidate isotopes such as Xe-136 and Se-82. The Topmetal sensor has an electronic noise <30 e- per pixel, which allows the detector to reach <1% FWHM energy resolution at the NLDBD Q-value for both Xe-136 and 82SeF6 gases by measuring ionization charges alone. The elimination of charge avalanche gain allows the direct sensing of slow-drifting ions, which enables the use of highly electronegative gas SeF6 in which free electrons do not exist. It supports the swapping of working gases without hardware modification, which is a unique way to validate signals against radioactive backgrounds. Since the sensor manufacturing and plane assembling could leverage unaltered industrial mass-production processes, stability, uniformity, scalability, and cost-effectiveness that are required for ton-scale experiments could all be reached. The strengths of TPC such as 3D ionization tracking and decay daughter tagging are retained. This development could lead to a competitive NLDBD experiment at and above ton-scale. The conceptual considerations, simulations, and initial prototyping are discussed.
We describe a novel high-speed front-end electronic board (FEB) for interfacing an array of 32 Silicon Photo-multipliers (SiPM) with a computer. The FEB provides individually adjustable bias on the SiPMs, and performs low-noise analog signal amplific ation, conditioning and digitization. It provides event timing information accurate to 1.3 ns RMS. The back-end data interface is realized on the basis of 100 Mbps Ethernet. The design allows daisy-chaining of up to 256 units into one network interface, thus enabling compact and efficient readout schemes for multi-channel scintillating detectors, using SiPMs as photo-sensors.
The {sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would sh ow that lepton number is violated and that neutrinos are Majorana particles and would simultaneously provide information on neutrino mass. Attaining sensitivities for neutrino masses in the inverted hierarchy region, $15 - 50$ meV, will require large, tonne-scale detectors with extremely low backgrounds, at the level of $sim$1 count/t-y or lower in the region of the signal. The {sc Majorana} collaboration, with funding support from DOE Office of Nuclear Physics and NSF Particle Astrophysics, is constructing the {sc Demonstrator}, an array consisting of 40 kg of p-type point-contact high-purity germanium (HPGe) detectors, of which $sim$30 kg will be enriched to 87% in $^{76}$Ge. The {sc Demonstrator} is being constructed in a clean room laboratory facility at the 4850 level (4300 m.w.e.) of the Sanford Underground Research Facility (SURF) in Lead, SD. It utilizes a compact graded shield approach with the inner portion consisting of ultra-clean Cu that is being electroformed and machined underground. The primary aim of the {sc Demonstrator} is to show the feasibility of a future tonne-scale measurement in terms of backgrounds and scalability.
A high-pressure xenon gas time projection chamber, with a unique cellular readout structure based on electroluminescence, has been developed for a large-scale neutrinoless double-beta decay search. In order to evaluate the detector performance and va lidate its design, a 180~L size prototype is being constructed and its commissioning with partial detector has been performed. The obtained energy resolution at 4.0~bar is 1.73 $pm$ 0.07% (FWHM) at 511 keV. The energy resolution at the $^{136}$Xe neutrinoless double-beta decay Q-value is estimated to be between 0.79 and 1.52% (FWHM) by extrapolation. Reconstructed event topologies show patterns peculiar to track end-point which can be used to distinguish $0 ubetabeta$ signals from gamma-ray backgrounds.
The observation of neutrinoless double-beta decay (0${ u}{beta}{beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inv erted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $sim$0.1 count /(FWHM$cdot$t$cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0${ u}{beta}{beta}$ signal region of all 0${ u}{beta}{beta}$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0${ u}{beta}{beta}$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا