ﻻ يوجد ملخص باللغة العربية
The observation of neutrinoless double-beta decay (0${ u}{beta}{beta}$) would show that lepton number is violated, reveal that neutrinos are Majorana particles, and provide information on neutrino mass. A discovery-capable experiment covering the inverted ordering region, with effective Majorana neutrino masses of 15 - 50 meV, will require a tonne-scale experiment with excellent energy resolution and extremely low backgrounds, at the level of $sim$0.1 count /(FWHM$cdot$t$cdot$yr) in the region of the signal. The current generation $^{76}$Ge experiments GERDA and the MAJORANA DEMONSTRATOR utilizing high purity Germanium detectors with an intrinsic energy resolution of 0.12%, have achieved the lowest backgrounds by over an order of magnitude in the 0${ u}{beta}{beta}$ signal region of all 0${ u}{beta}{beta}$ experiments. Building on this success, the LEGEND collaboration has been formed to pursue a tonne-scale $^{76}$Ge experiment. The collaboration aims to develop a phased 0${ u}{beta}{beta}$ experimental program with discovery potential at a half-life approaching or at $10^{28}$ years, using existing resources as appropriate to expedite physics results.
The {sc Majorana} collaboration is searching for neutrinoless double beta decay using $^{76}$Ge, which has been shown to have a number of advantages in terms of sensitivities and backgrounds. The observation of neutrinoless double-beta decay would sh
CUPID-Mo is a bolometric experiment to search for neutrinoless double-beta decay ($0 ubetabeta$) of $^{100}$Mo. In this article, we detail the CUPID-Mo detector concept, assembly, installation in the underground laboratory in Modane in 2018, and prov
We present data characterizing the performance of the first segmented, N-type Ge detector, isotopically enriched to 85% $^{76}$Ge. This detector, based on the Ortec PT6x2 design and referred to as SEGA (Segmented, Enriched Germanium Assembly), was de
The LUCIFER project aims at deploying the first array of enriched scintillating bolometers for the investigation of neutrinoless double-beta decay of $^{82}$Se. The matrix which embeds the source is an array of ZnSe crystals, where enriched $^{82}$Se
The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double beta decay of 76Ge. The signature of the signal is a monoenergetic peak at 2039 keV, the Q-value of the decay