ترغب بنشر مسار تعليمي؟ اضغط هنا

Manganese Indicates a Transition from Sub- to Near-Chandrasekhar Type Ia Supernovae in Dwarf Galaxies

99   0   0.0 ( 0 )
 نشر من قبل Mithi de los Reyes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Manganese (Mn) abundances are sensitive probes of the progenitors of Type Ia supernovae (SNe). In this work, we present a catalog of manganese abundances in dwarf spheroidal satellites of the Milky Way, measured using medium-resolution spectroscopy. Using a simple chemical evolution model, we infer the manganese yield of Type Ia SNe in the Sculptor dwarf spheroidal galaxy (dSph) and compare to theoretical yields. The sub-solar yield from Type Ia SNe ($mathrm{[Mn/Fe]}_{mathrm{Ia}}=-0.30_{-0.03}^{+0.03}$ at $mathrm{[Fe/H]}=-1.5$ dex, with negligible dependence on metallicity) implies that sub-Chandrasekhar-mass (sub-$M_{mathrm{Ch}}$) white dwarf progenitors are the dominant channel of Type Ia SNe at early times in this galaxy, although some fraction ($gtrsim20%$) of $M_{mathrm{Ch}}$ Type Ia or Type Iax SNe are still needed to produce the observed yield. However, this result does not hold in all environments. In particular, we find that dSph galaxies with extended star formation histories (Leo I, Fornax dSphs) appear to have higher [Mn/Fe] at a given metallicity than galaxies with early bursts of star formation (Sculptor dSph), suggesting that $M_{mathrm{Ch}}$ progenitors may become the dominant channel of Type Ia SNe at later times in a galaxys chemical evolution.



قيم البحث

اقرأ أيضاً

80 - Evan N. Kirby 2019
There is no consensus on the progenitors of Type Ia supernovae (SNe Ia) despite their importance for cosmology and chemical evolution. We address this question by using our previously published catalogs of Mg, Si, Ca, Cr, Fe, Co, and Ni abundances in dwarf galaxy satellites of the Milky Way to constrain the mass at which the white dwarf explodes during a typical SN Ia. We fit a simple bi-linear model to the evolution of [X/Fe] with [Fe/H], where X represents each of the elements mentioned above. We use the evolution of [Mg/Fe] coupled with theoretical supernova yields to isolate what fraction of the elements originated in SNe Ia. Then, we infer the [X/Fe] yield of SNe Ia for all of the elements except Mg. We compare these observationally inferred yields to recent theoretical predictions for two classes of Chandrasekhar-mass (M_Ch) SN Ia as well as sub-M_Ch SNe Ia. Most of the inferred SN Ia yields are consistent with all of the theoretical models, but [Ni/Fe] is consistent only with sub-M_Ch models. We conclude that the dominant type of SN Ia in ancient dwarf galaxies is the explosion of a sub-M_Ch white dwarf. The Milky Way and dwarf galaxies with extended star formation histories have higher [Ni/Fe] abundances, which could indicate that the dominant class of SN Ia is different for galaxies where star formation lasted for at least several Gyr.
Type Ia supernovae are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally p roduce the correct mix of elements, but have to be finely tuned to proceed from sub-sonic deflagration to super-sonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar white dwarfs that are far too small. Here, we suggest that type Ia supernovae instead result from mergers of roughly equal-mass carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to type Ia supernovae. With this merger scenario, we can understand the type Ia rates, and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae towards younger populations. We speculate that explosions of white dwarfs slowly brought to the Chandrasekhar limit---which should also occur---are responsible for some of the atypical type Ia supernovae.
A non-local-thermodynamic-equilibrium (NLTE) level population model of the first and second ionisation stages of iron, nickel and cobalt is used to fit a sample of XShooter optical + near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia). From th e ratio of the NIR lines to the optical lines limits can be placed on the temperature and density of the emission region. We find a similar evolution of these parameters across our sample. Using the evolution of the Fe II 12$,$570$,mathring{A},$to 7$,$155$,mathring{A},$line as a prior in fits of spectra covering only the optical wavelengths we show that the 7200$,mathring{A},$feature is fully explained by [Fe II] and [Ni II] alone. This approach allows us to determine the abundance of Ni II$,$/$,$Fe II for a large sample of 130 optical spectra of 58 SNe Ia with uncertainties small enough to distinguish between Chandrasekhar mass (M$_{text{Ch}}$) and sub-Chandrasekhar mass (sub-M$_{text{Ch}}$) explosion models. We conclude that the majority (85$%$) of normal SNe Ia have a Ni/Fe abundance that is in agreement with predictions of sub-M$_{text{Ch}}$ explosion simulations of $sim Z_odot$ progenitors. Only a small fraction (11$%$) of objects in the sample have a Ni/Fe abundance in agreement with M$_{text{Ch}}$ explosion models.
Context: Manganese is predominantly synthesised in Type Ia supernova (SN Ia) explosions. Owing to the entropy dependence of the Mn yield in explosive thermonuclear burning, SNe Ia involving near Chandrasekhar-mass white dwarfs (WDs) are predicted to produce Mn to Fe ratios significantly exceeding those of SN Ia explosions involving sub-Chandrasekhar mass primary WDs. Of all current supernova explosion models, only SN Ia models involving near-Chandrasekhar mass WDs produce [Mn/Fe] > 0.0. Aims: Using the specific yields for competing SN Ia scenarios, we aim to constrain the relative fractions of exploding near-Chandrasekhar mass to sub-Chandrasekhar mass primary WDs in the Galaxy. Methods: We extract the Mn yields from three-dimensional thermonuclear supernova simulations referring to different initial setups and progenitor channels. We then compute the chemical evolution of Mn in the Solar neighborhood, assuming SNe Ia are made up of different relative fractions of the considered explosion models. Results: We find that due to the entropy dependence of freeze-out yields from nuclear statistical equilibrium, [Mn/Fe] strongly depends on the mass of the exploding WD, with near-Chandraskher mass WDs producing substantially higher [Mn/Fe] than sub-Chandrasekhar mass WDs. Of all nucleosynthetic sources potentially influencing the chemical evolution of Mn, only explosion models involving the thermonuclear incineration of near-Chandrasekhar mass WDs predict solar or super-solar [Mn/Fe]. Consequently, we find in our chemical evolution calculations that the observed [Mn/Fe] in the Solar neighborhood at [Fe/H] > 0.0 cannot be reproduced without near-Chandrasekhar mass SN Ia primaries. Assuming that 50 per cent of all SNe Ia stem from explosive thermonuclear burning in near-Chandrasekhar mass WDs results in a good match to data.
We present a first systematic comparison of superluminous Type Ia supernovae (SNe Ia) at late epochs, including previously unpublished photometric and spectroscopic observations of SN 2007if, SN 2009dc and SNF20080723-012. Photometrically, the object s of our sample show a diverse late-time behaviour, some of them fading quite rapidly after a light-curve break at ~150-200d. The latter is likely the result of flux redistribution into the infrared, possibly caused by dust formation, rather than a true bolometric effect. Nebular spectra of superluminous SNe Ia are characterised by weak or absent [Fe III] emission, pointing at a low ejecta ionisation state as a result of high densities. To constrain the ejecta and 56Ni masses of superluminous SNe Ia, we compare the observed bolometric light curve of SN 2009dc with synthetic model light curves, focusing on the radioactive tail after ~60d. Models with enough 56Ni to explain the light-curve peak by radioactive decay, and at the same time sufficient mass to keep the ejecta velocities low, fail to reproduce the observed light-curve tail of SN 2009dc because of too much gamma-ray trapping. We instead propose a model with ~1 solar mass of 56Ni and ~2 solar masses of ejecta, which may be interpreted as the explosion of a Chandrasekhar-mass white dwarf (WD) enshrouded by 0.6-0.7 solar masses of C/O-rich material, as it could result from a merger of two massive C/O WDs. This model reproduces the late light curve of SN 2009dc well. A flux deficit at peak may be compensated by light from the interaction of the ejecta with the surrounding material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا