ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying and Compensating for Feature Deviation in Imbalanced Deep Learning

127   0   0.0 ( 0 )
 نشر من قبل Wei-Lun Chao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate learning a ConvNet classifier with class-imbalanced data. We found that a ConvNet significantly over-fits the minor classes that do not have sufficient training instances, which is quite opposite to a traditional machine learning model like logistic regression that often under-fits minor classes. We conduct a series of analysis and argue that feature deviation between the training and test instances serves as the main cause. We propose to incorporate class-dependent temperatures (CDT) in learning a ConvNet: CDT forces the minor-class instances to have larger decision values in the training phase, so as to compensate for the effect of feature deviation in the test data. We validate our approach on several benchmark datasets and achieve promising performance. We hope that our insights can inspire new ways of thinking in resolving class-imbalanced deep learning.



قيم البحث

اقرأ أيضاً

Neural networks trained with class-imbalanced data are known to perform poorly on minor classes of scarce training data. Several recent works attribute this to over-fitting to minor classes. In this paper, we provide a novel explanation of this issue . We found that a neural network tends to first under-fit the minor classes by classifying most of their data into the major classes in early training epochs. To correct these wrong predictions, the neural network then must focus on pushing features of minor class data across the decision boundaries between major and minor classes, leading to much larger gradients for features of minor classes. We argue that such an under-fitting phase over-emphasizes the competition between major and minor classes, hinders the neural network from learning the discriminative knowledge that can be generalized to test data, and eventually results in over-fitting. To address this issue, we propose a novel learning strategy to equalize the training progress across classes. We mix features of the major class data with those of other data in a mini-batch, intentionally weakening their features to prevent a neural network from fitting them first. We show that this strategy can largely balance the training accuracy and feature gradients across classes, effectively mitigating the under-fitting then over-fitting problem for minor class data. On several benchmark datasets, our approach achieves the state-of-the-art accuracy, especially for the challenging step-imbalanced cases.
Data in real-world application often exhibit skewed class distribution which poses an intense challenge for machine learning. Conventional classification algorithms are not effective in the case of imbalanced data distribution, and may fail when the data distribution is highly imbalanced. To address this issue, we propose a general imbalanced classification model based on deep reinforcement learning. We formulate the classification problem as a sequential decision-making process and solve it by deep Q-learning network. The agent performs a classification action on one sample at each time step, and the environment evaluates the classification action and returns a reward to the agent. The reward from minority class sample is larger so the agent is more sensitive to the minority class. The agent finally finds an optimal classification policy in imbalanced data under the guidance of specific reward function and beneficial learning environment. Experiments show that our proposed model outperforms the other imbalanced classification algorithms, and it can identify more minority samples and has great classification performance.
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution di screpancy across different domains. Due to the fact that all the domain alignment approaches can only reduce, but not remove the domain shift. Target domain samples distributed near the edge of the clusters, or far from their corresponding class centers are easily to be misclassified by the hyperplane learned from the source domain. To alleviate this issue, we propose to joint domain alignment and discriminative feature learning, which could benefit both domain alignment and final classification. Specifically, an instance-based discriminative feature learning method and a center-based discriminative feature learning method are proposed, both of which guarantee the domain invariant features with better intra-class compactness and inter-class separability. Extensive experiments show that learning the discriminative features in the shared feature space can significantly boost the performance of deep domain adaptation methods.
Semi-Supervised Learning (SSL) has achieved great success in overcoming the difficulties of labeling and making full use of unlabeled data. However, SSL has a limited assumption that the numbers of samples in different classes are balanced, and many SSL algorithms show lower performance for the datasets with the imbalanced class distribution. In this paper, we introduce a task of class-imbalanced semi-supervised learning (CISSL), which refers to semi-supervised learning with class-imbalanced data. In doing so, we consider class imbalance in both labeled and unlabeled sets. First, we analyze existing SSL methods in imbalanced environments and examine how the class imbalance affects SSL methods. Then we propose Suppressed Consistency Loss (SCL), a regularization method robust to class imbalance. Our method shows better performance than the conventional methods in the CISSL environment. In particular, the more severe the class imbalance and the smaller the size of the labeled data, the better our method performs.
We propose a novel unsupervised generative model that learns to disentangle object identity from other low-level aspects in class-imbalanced data. We first investigate the issues surrounding the assumptions about uniformity made by InfoGAN, and demon strate its ineffectiveness to properly disentangle object identity in imbalanced data. Our key idea is to make the discovery of the discrete latent factor of variation invariant to identity-preserving transformations in real images, and use that as a signal to learn the appropriate latent distribution representing object identity. Experiments on both artificial (MNIST, 3D cars, 3D chairs, ShapeNet) and real-world (YouTube-Faces) imbalanced datasets demonstrate the effectiveness of our method in disentangling object identity as a latent factor of variation.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا