ﻻ يوجد ملخص باللغة العربية
We study the spreading of viruses, such as SARS-CoV-2, by airborne aerosols, via a new first-passage-time problem for Lagrangian tracers that are advected by a turbulent flow: By direct numerical simulations of the three-dimensional (3D) incompressible, Navier-Stokes equation, we obtain the time $t_R$ at which a tracer, initially at the origin of a sphere of radius $R$, crosses the surface of the sphere textit{for the first time}. We obtain the probability distribution function $mathcal{P}(R,t_R)$ and show that it displays two qualitatively different behaviors: (a) for $R ll L_{rm I}$, $mathcal{P}(R,t_R)$ has a power-law tail $sim t_R^{-alpha}$, with the exponent $alpha = 4$ and $L_{rm I}$ the integral scale of the turbulent flow; (b) for $l_{rm I} lesssim R $, the tail of $mathcal{P}(R,t_R)$ decays exponentially. We develop models that allow us to obtain these asymptotic behaviors analytically. We show how to use $mathcal{P}(R,t_R)$ to develop social-distancing guidelines for the mitigation of the spreading of airborne aerosols with viruses such as SARS-CoV-2.
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering s
We investigate the gravitational settling of a long, model elastic filament in homogeneous isotropic turbulence. We show that the flow produces a strongly fluctuating settling velocity, whose mean is moderately enhanced over the still-fluid terminal
We theoretically investigate the effect of random fluctuations on the motion of elongated microswimmers near hydrodynamic transport barriers in externally-driven fluid flows. Focusing on the two-dimensional hyperbolic flow, we consider the effects of
The dynamics of small, yet heavy, identical particles in turbulence exhibits singularities, called caustics, that lead to large fluctuations in the spatial particle-number density, and in collision velocities. For large particle, inertia the fluid ve