ﻻ يوجد ملخص باللغة العربية
We use momentum transfer arguments to predict the friction factor $f$ in two-dimensional turbulent soap-film flows with rough boundaries (an analogue of three-dimensional pipe flow) as a function of Reynolds number Re and roughness $r$, considering separately the inverse energy cascade and the forward enstrophy cascade. At intermediate Re, we predict a Blasius-like friction factor scaling of $fproptotextrm{Re}^{-1/2}$ in flows dominated by the enstrophy cascade, distinct from the energy cascade scaling of $textrm{Re}^{-1/4}$. For large Re, $f sim r$ in the enstrophy-dominated case. We use conformal map techniques to perform direct numerical simulations that are in satisfactory agreement with theory, and exhibit data collapse scaling of roughness-induced criticality, previously shown to arise in the 3D pipe data of Nikuradse.
We present experimental evidence of statistical conformal invariance in isocontours of fluid thickness in experiments of two-dimensional turbulence using soap films. A Schlieren technique is used to visualize regions of the flow with constant film th
Phoresis, the drift of particles induced by scalar gradients in a flow, can result in an effective compressibility, bringing together or repelling particles from each other. Here, we ask whether this effect can affect the transport of particles in a
We study the spreading of viruses, such as SARS-CoV-2, by airborne aerosols, via a new first-passage-time problem for Lagrangian tracers that are advected by a turbulent flow: By direct numerical simulations of the three-dimensional (3D) incompressib
We investigate the gravitational settling of a long, model elastic filament in homogeneous isotropic turbulence. We show that the flow produces a strongly fluctuating settling velocity, whose mean is moderately enhanced over the still-fluid terminal
We perform direct numerical simulations (DNS) of passive heavy inertial particles (dust) in homogeneous and isotropic two-dimensional turbulent flows (gas) for a range of Stokes number, ${rm St} < 1$, using both Lagrangian and Eulerian approach (with