ﻻ يوجد ملخص باللغة العربية
Gravitational waves produced from the merger of binary neutron stars (BNSs) are accompanied by electromagnetic counterparts, making it possible to identify the associated host galaxy. We explore how properties of the host galaxies relate to the astrophysical processes leading to the mergers. It is thought that the BNS merger rate within a galaxy at a given epoch depends primarily on the galaxys star-formation history as well as the underlying merger time-delay distribution of the binary systems. The stellar history of a galaxy, meanwhile, depends on the cosmological evolution of the galaxy through time, and is tied to the growth of structure in the Universe. We study the hosts of BNS mergers in the context of structure formation by populating the Universe Machine simulations with gravitational-wave events~ according to a simple time-delay model. We find that different time-delay distributions predict different properties of the associated host galaxies, including the distributions of stellar mass, star-formation rate, halo mass, and local and large-scale clustering of hosts. BNSs that merge today with short delay times prefer to be in hosts that have high star-formation rates, while those with long delay times live in dense regions within massive halos that have low star formation. We show that with ${mathcal O}(10)$ events from current gravitational-wave detector networks, it is possible to make preliminary distinctions between formation channels which trace stellar mass, halo mass, or star-formation rate. We also find that strategies to follow up gravitational-wave events with electromagnetic telescopes can be significantly optimized using the clustering properties of their hosts.
Understanding the host galaxy properties of stellar binary black hole (SBBH) mergers is important for revealing the origin of the SBBH gravitational-wave sources detected by advanced LIGO and helpful for identifying their electromagnetic counterparts
The historic detection of gravitational waves from a binary neutron star merger (GW170817) and its electromagnetic counterpart led to the first accurate (sub-arcsecond) localization of a gravitational-wave event. The transient was found to be $sim$10
Inspiralling compact binaries as standard sirens will soon become an invaluable tool for cosmology when advanced interferometric gravitational-wave detectors begin their observations in the coming years. However, a degeneracy in the information carri
Recently, the optical counterpart of a gravitational wave source GW170817 has been identified in NGC 4993 galaxy. Together with evidence from observations in electromagnetic waves, the event has been suggested as a result of a merger of two neutron s
We analyse spectroscopic measurements of 122 type Ia supernovae (SNe Ia) with z<0.09 discovered by the Palomar Transient Factory, focusing on the properties of the Si II 6355 and Ca II `near-infrared triplet absorptions. We examine the velocities of