ﻻ يوجد ملخص باللغة العربية
Marine buoys aid in the battle against Illegal, Unreported and Unregulated (IUU) fishing by detecting fishing vessels in their vicinity. Marine buoys, however, may be disrupted by natural causes and buoy vandalism. In this paper, we formulate marine buoy placement as a clustering problem, and propose dropout k-means and dropout k-median to improve placement robustness to buoy disruption. We simulated the passage of ships in the Gabonese waters near West Africa using historical Automatic Identification System (AIS) data, then compared the ship detection probability of dropout k-means to classic k-means and dropout k-median to classic k-median. With 5 buoys, the buoy arrangement computed by classic k-means, dropout k-means, classic k-median and dropout k-median have ship detection probabilities of 38%, 45%, 48% and 52%.
$k$-means algorithm is one of the most classical clustering methods, which has been widely and successfully used in signal processing. However, due to the thin-tailed property of the Gaussian distribution, $k$-means algorithm suffers from relatively
We present a simple heuristic algorithm for efficiently optimizing the notoriously hard minimum sum-of-squares clustering problem, usually addressed by the classical k-means heuristic and its variants. The algorithm, called recombinator-k-means, is v
Biclustering is the task of simultaneously clustering the rows and columns of the data matrix into different subgroups such that the rows and columns within a subgroup exhibit similar patterns. In this paper, we consider the case of producing block-d
This article briefly introduced Arthur and Vassilvitshiis work on textbf{k-means++} algorithm and further generalized the center initialization process. It is found that choosing the most distant sample point from the nearest center as new center can
We address the problem of simultaneously learning a k-means clustering and deep feature representation from unlabelled data, which is of interest due to the potential of deep k-means to outperform traditional two-step feature extraction and shallow-c