ﻻ يوجد ملخص باللغة العربية
Using a streak camera, we directly measure time- and space-resolved dynamics of N2+ emission from a self-seeded filament. We observe characteristic signatures of superfluorescence even under ambient conditions and show that the timing of the emitted light varies along the length of the filament. These effects must be taken into consideration for accurate modelling of light filaments in air, and can be exploited to engineer the temporal profile of light emission in air lasing.
We report the cell biological applications of a recently developed multiphoton fluorescence lifetime imaging microscopy system using a streak camera (StreakFLIM). The system was calibrated with standard fluorophore specimens and was shown to have hig
We report the development and detailed calibration of a multiphoton fluorescence lifetime imaging system (FLIM) using a streak camera. The present system is versatile with high spatial (0.2 micron) and temporal (50 psec) resolution and allows rapid d
Fluorescence Lifetime Imaging Microscopy (FLIM) using multiphoton excitation techniques is now finding an important place in quantitative imaging of protein-protein interactions and intracellular physiology. We review here the recent developments in
Using the recently developed concept of the 2-electron streak camera (see NJP 12, 103024 (2010)), we have studied the energy-sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We find that the most symmetric an
Up to this point streak-cameras have been a powerful tool for temporal characterization of ultrafast light pulses even at the single photon level. However, the low signal-to-noise ratio in the infrared range prevents measurement on weak light sources