ﻻ يوجد ملخص باللغة العربية
Using the recently developed concept of the 2-electron streak camera (see NJP 12, 103024 (2010)), we have studied the energy-sharing between the two ionizing electrons in single-photon double ionization of He(1s2s). We find that the most symmetric and asymmetric energy sharings correspond to different ionization dynamics with the ions Coulomb potential significantly influencing the latter. This different dynamics for the two extreme energy sharings gives rise to different patterns in asymptotic observables and different time-delays between the emission of the two electrons. We show that the 2-electron streak camera resolves the time-delays between the emission of the two electrons for different energy sharings.
Multi-electron dynamics in atoms and molecules very often occur on sub- to few-femtosecond timescales. The available intensities of extreme-ultraviolet (XUV) attosecond pulses have previously only allowed the time-resolved investigation of two-photon
The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio betwee
Transition metals with their densely confined and strongly coupled valence electrons are key constituents of many materials with unconventional properties, such as high-Tc superconductors, Mott insulators and transition-metal dichalcogenides. Strong
Up to this point streak-cameras have been a powerful tool for temporal characterization of ultrafast light pulses even at the single photon level. However, the low signal-to-noise ratio in the infrared range prevents measurement on weak light sources
We use a Wigner distribution-like function based on the strong field approximation theory to obtain the time-energy distributions and the ionization time distributions of electrons ionized by an XUV pulse alone and in the presence of an infrared (IR)