ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-lane Detection Using Instance Segmentation and Attentive Voting

487   0   0.0 ( 0 )
 نشر من قبل Shubham Goswami
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Donghoon Chang




اسأل ChatGPT حول البحث

Autonomous driving is becoming one of the leading industrial research areas. Therefore many automobile companies are coming up with semi to fully autonomous driving solutions. Among these solutions, lane detection is one of the vital driver-assist features that play a crucial role in the decision-making process of the autonomous vehicle. A variety of solutions have been proposed to detect lanes on the road, which ranges from using hand-crafted features to the state-of-the-art end-to-end trainable deep learning architectures. Most of these architectures are trained in a traffic constrained environment. In this paper, we propose a novel solution to multi-lane detection, which outperforms state of the art methods in terms of both accuracy and speed. To achieve this, we also offer a dataset with a more intuitive labeling scheme as compared to other benchmark datasets. Using our approach, we are able to obtain a lane segmentation accuracy of 99.87% running at 54.53 fps (average).



قيم البحث

اقرأ أيضاً

In this paper, we present a novel Motion-Attentive Transition Network (MATNet) for zero-shot video object segmentation, which provides a new way of leveraging motion information to reinforce spatio-temporal object representation. An asymmetric attent ion block, called Motion-Attentive Transition (MAT), is designed within a two-stream encoder, which transforms appearance features into motion-attentive representations at each convolutional stage. In this way, the encoder becomes deeply interleaved, allowing for closely hierarchical interactions between object motion and appearance. This is superior to the typical two-stream architecture, which treats motion and appearance separately in each stream and often suffers from overfitting to appearance information. Additionally, a bridge network is proposed to obtain a compact, discriminative and scale-sensitive representation for multi-level encoder features, which is further fed into a decoder to achieve segmentation results. Extensive experiments on three challenging public benchmarks (i.e. DAVIS-16, FBMS and Youtube-Objects) show that our model achieves compelling performance against the state-of-the-arts.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
152 - Yu-Huan Wu , Yun Liu , Le Zhang 2020
Much of the recent efforts on salient object detection (SOD) have been devoted to producing accurate saliency maps without being aware of their instance labels. To this end, we propose a new pipeline for end-to-end salient instance segmentation (SIS) that predicts a class-agnostic mask for each detected salient instance. To better use the rich feature hierarchies in deep networks and enhance the side predictions, we propose the regularized dense connections, which attentively promote informative features and suppress non-informative ones from all feature pyramids. A novel multi-level RoIAlign based decoder is introduced to adaptively aggregate multi-level features for better mask predictions. Such strategies can be well-encapsulated into the Mask R-CNN pipeline. Extensive experiments on popular benchmarks demonstrate that our design significantly outperforms existing sArt competitors by 6.3% (58.6% vs. 52.3%) in terms of the AP metric.The code is available at https://github.com/yuhuan-wu/RDPNet.
Existing methods for instance segmentation in videos typi-cally involve multi-stage pipelines that follow the tracking-by-detectionparadigm and model a video clip as a sequence of images. Multiple net-works are used to detect objects in individual fr ames, and then associatethese detections over time. Hence, these methods are often non-end-to-end trainable and highly tailored to specific tasks. In this paper, we pro-pose a different approach that is well-suited to a variety of tasks involvinginstance segmentation in videos. In particular, we model a video clip asa single 3D spatio-temporal volume, and propose a novel approach thatsegments and tracks instances across space and time in a single stage. Ourproblem formulation is centered around the idea of spatio-temporal em-beddings which are trained to cluster pixels belonging to a specific objectinstance over an entire video clip. To this end, we introduce (i) novel mix-ing functions that enhance the feature representation of spatio-temporalembeddings, and (ii) a single-stage, proposal-free network that can rea-son about temporal context. Our network is trained end-to-end to learnspatio-temporal embeddings as well as parameters required to clusterthese embeddings, thus simplifying inference. Our method achieves state-of-the-art results across multiple datasets and tasks. Code and modelsare available at https://github.com/sabarim/STEm-Seg.
76 - Zhi Tian , Bowen Zhang , Hao Chen 2021
We propose a simple yet effective framework for instance and panoptic segmentation, termed CondInst (conditional convolutions for instance and panoptic segmentation). In the literature, top-performing instance segmentation methods typically follow th e paradigm of Mask R-CNN and rely on ROI operations (typically ROIAlign) to attend to each instance. In contrast, we propose to attend to the instances with dynamic conditional convolutions. Instead of using instance-wise ROIs as inputs to the instance mask head of fixed weights, we design dynamic instance-aware mask heads, conditioned on the instances to be predicted. CondInst enjoys three advantages: 1.) Instance and panoptic segmentation are unified into a fully convolutional network, eliminating the need for ROI cropping and feature alignment. 2.) The elimination of the ROI cropping also significantly improves the output instance mask resolution. 3.) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. layers, each having only 8 channels), leading to significantly faster inference time per instance and making the overall inference time almost constant, irrelevant to the number of instances. We demonstrate a simpler method that can achieve improved accuracy and inference speed on both instance and panoptic segmentation tasks. On the COCO dataset, we outperform a few state-of-the-art methods. We hope that CondInst can be a strong baseline for instance and panoptic segmentation. Code is available at: https://git.io/AdelaiDet

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا