ترغب بنشر مسار تعليمي؟ اضغط هنا

Creation and Evolution of Impact-generated Reduced Atmospheres of Early Earth

95   0   0.0 ( 0 )
 نشر من قبل Kevin Zahnle
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The origin of life on Earth seems to demand a highly reduced early atmosphere, rich in CH4, H2, and NH3, but geological evidence suggests that Earths mantle has always been relatively oxidized and its emissions dominated by CO2 H2O, and N2. The paradox can be resolved by exploiting the reducing power inherent in the late veneer, i.e., material accreted by Earth after the Moon-forming impact. Isotopic evidence indicates that the late veneer consisted of extremely dry, highly reduced inner solar system materials, suggesting that Earths oceans were already present when the late veneer came. The major primary product of reaction between the late veneers iron and Earths water was H2. Ocean vaporizing impacts generate high pressures and long cooling times that favor CH4 and NH3. Impacts too small to vaporize the oceans are much less productive of CH4 and NH3, unless (i) catalysts were available to speed their formation, or (ii) additional reducing power was extracted from pre-existing crustal or mantle materials. The transient H2-CH4 atmospheres evolve photochemically to generate nitrogenated hydrocarbons at rates determined by solar radiation and hydrogen escape, on timescales ranging up to tens of millions of years and with cumulative organic production ranging up to half a kilometer. Roughly one ocean of hydrogen escapes. The atmosphere after the methanes gone is typically H2 and CO rich, with eventual oxidation to CO2 rate-limited by water photolysis and hydrogen escape.

قيم البحث

اقرأ أيضاً

Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photoc hemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event (GOE) in Earths history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O$_2$ concentrations are fixed to values inferred by geological evidence. Applying a unique tool, ours is the first quantitative analysis of catalytic cycles that governed O$_2$ in early Earths atmosphere near the GOE. Complicated oxidation pathways play a key role in destroying O$_2$, whereas in the upper atmosphere, most O$_2$ is formed abiotically via CO$_2$ photolysis. The O$_2$ bistability found by Goldblatt et al. (2006) is not observed in our calculations likely due to our detailed CH$_4$ oxidation scheme. We calculate increased CH$_4$ with increasing O$_2$ during the GOE. For a given atmospheric surface flux, different atmospheric states are possible; however, the net primary productivity (NPP) of the biosphere that produces O$_2$ is unique. Mixing, CH$_4$ fluxes, ocean solubility, and mantle/crust properties strongly affect NPP and surface O$_2$ fluxes. Regarding exoplanets, different states of O$_2$ could exist for similar biomass output. Strong geological activity could lead to false negatives for life.
We predict that cyanoacetylene (HC$_3$N) is produced photochemically in the atmosphere of GJ 1132 b in abundances detectable by the James Webb Space Telescope (JWST), assuming that the atmosphere is as described by Swain et al. (2021). First, we cons truct line list and cross-sections for HC$_3$N. Then we apply these cross-sections and the model atmosphere of Swain et al. (2021) to a radiative transfer model in order to simulate the transmission spectrum of GJ 1132 b as it would be seen by JWST, accounting for the uncertainty in the retrieved abundances. We predict that cyanoacetylene features at various wavelengths, with a clear lone feature at 4.5 $mu$m, observable by JWST after four transits. This feature persists within the $1-sigma$ uncertainty of the retrieved abundances of HCN and CH$_4$.
Earth-like planets orbiting M-dwarfs are prominent future targets when searching for life outside the solar system. We apply our newly developed Coupled Atmosphere Biogeochemistry model to investigate the coupling between the biosphere, geosphere and atmosphere to gain deeper insight into the atmospheric evolution of Earth-like planets orbiting M-dwarfs. Our main goal is to understand better atmospheric processes affecting biosignatures and climate on such worlds. Furthermore, this is the first study to our knowledge which applies an automated chemical pathway analysis quantifying the production and destruction pathways of O$_2$ for an Earth-like planet with an Archean O$_2$ abundance orbiting in the habitable zone of the M-dwarf AD Leo. Results suggest that the main production arises in the upper atmosphere from CO$_2$ photolysis followed by catalytic HO$_x$ reactions. The strongest destruction does not take place in the troposphere, as was the case in Gebauer et al. (2017) for an early-Earth analog planet around the Sun, but instead in the middle atmosphere where H$_2$O photolysis is the strongest. This result was driven by the strong Lyman-$alpha$-radiation output of AD Leo, which efficiently photolyzes H$_2$O. Results further suggest that early Earth-like atmospheres of planets orbiting an M-dwarf like AD Leo are in absolute terms less destructive for atmospheric O$_2$ than for early-Earth analog planets around the Sun despite higher concentrations of reduced gases such as e.g. H$_2$, CH$_4$ and CO. Hence the net primary productivity (NPP) required to produce the same amount of atmospheric O$_2$ at the surface is reduced. This implies that a possible Great Oxidation event, analogous to that on Earth, would have occurred earlier in time in analog atmospheres around M-dwarfs.
After Earths origin, our host star, the Sun, was shining 20 to 25 percent less brightly than today. Without greenhouse-like conditions to warm the atmosphere, our early planet would have been an ice ball and life may never have evolved. But life did evolve, which indicates that greenhouse gases must have been present on early Earth to warm the planet. Evidence from the geologic record indicates an abundance of the greenhouse gas CO2. CH4 was probably present as well, and in this regard methanogenic bacteria, which belong to a diverse group of anaerobic procaryotes that ferment CO 2 plus H2 to CH4, may have contributed to modification of the early atmosphere. Molecular oxygen was not present, as is indicated by the study of rocks from that era, which contain iron carbonate rather than iron oxide. Multicellular organisms originated as cells within colonies that became increasingly specialized. The development of photosynthesis allowed the Suns energy to be harvested directly by life forms. The resultant oxygen accumulated in the atmosphere and formed the ozone layer in the upper atmosphere. Aided by the absorption of harmful UV radiation in the ozone layer, life colonized Earths surface. Our own planet is a very good example of how life forms modified the atmosphere over the planets life time. We show that these facts have to be taken into account when we discover and characterize atmospheres of Earth-like exoplanets. If life has originated and evolved on a planet, then it should be expected that a strong co-evolution occurred between life and the atmosphere, the result of which is the planets climate.
Currently, there are about 3 dozen known super-Earth (M < 10 MEarth), of which 8 are transiting planets suitable for atmospheric follow-up observations. Some of the planets are exposed to extreme temperatures as they orbit close to their host stars, e.g., CoRot-7b, and all of these planets have equilibrium temperatures significantly hotter than the Earth. Such planets can develop atmospheres through (partial) vaporization of their crustal and/or mantle silicates. We investigated the chemical equilibrium composition of such heated systems from 500 - 4000 K and total pressures from 10-6 to 10+2 bars. The major gases are H2O and CO2 over broad temperature and pressure ranges, and Na, K, O2, SiO, and O at high temperatures and low pressures. We discuss the differences in atmospheric composition arising from vaporization of SiO2-rich (i.e., felsic) silicates (like Earths continental crust) and MgO-, FeO-rich (i.e., mafic) silicates like the bulk silicate Earth. The computational results will be useful in planning spectroscopic studies of the atmospheres of Earth-like exoplanets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا