ترغب بنشر مسار تعليمي؟ اضغط هنا

Conformal and isometric embeddings of gravitational instantons

348   0   0.0 ( 0 )
 نشر من قبل Maciej Dunajski
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct isometric and conformally isometric embeddings of some gravitational instantons in $mathbb{R}^8$ and $mathbb{R}^7$. In particular we show that the embedding class of the Einstein--Maxwell instanton due to Burns is equal to $3$. For $mathbb{CP}^2$, Eguchi--Hanson and anti-self-dual Taub-NUT we obtain upper and lower bounds on the embedding class.



قيم البحث

اقرأ أيضاً

We study non-Einstein Bach-flat gravitational instanton solutions that can be regarded as the generalization of the Taub-NUT/Bolt and Eguchi-Hanson solutions of Einstein gravity to conformal gravity. These solutions include non-Einstein spaces which are either asymptotically locally flat spacetimes (ALF) or asymptotically locally Anti-de Sitter (AlAdS). Nevertheless, solutions with different asymptotic conditions exist: we find geometries that present a weakened AlAdS asymptotia, exhibiting the typical low decaying mode of conformal gravity. This permits to identify the simple Neumann boundary condition that, as it happens in the asymptotically AdS sector, selects the Einstein solution out of the solutions of conformal gravity. All the geometries present non-vanishing Hirzebruch signature and Euler characteristic, being single-centered instantons. We compute the topological charges as well as the Noether charges of the Taub-NUT/Bolt and Eguchi-Hanson spacetimes, which happen to be finite. This enables us to study the thermodynamic properties of these geometries.
226 - Maciej Dunajski , Paul Tod 2019
We study the integrability of the conformal geodesic flow (also known as the conformal circle flow) on the $SO(3)$--invariant gravitational instantons. On a hyper--Kahler four--manifold the conformal geodesic equations reduce to geodesic equations of a charged particle moving in a constant self--dual magnetic field. In the case of the anti--self--dual Taub NUT instanton we integrate these equations completely by separating the Hamilton--Jacobi equations, and finding a commuting set of first integrals. This gives the first example of an integrable conformal geodesic flow on a four--manifold which is not a symmetric space. In the case of the Eguchi--Hanson we find all conformal geodesics which lie on the three--dimensional orbits of the isometry group. In the non--hyper--Kahler case of the Fubini--Study metric on $CP^2$ we use the first integrals arising from the conformal Killing--Yano tensors to recover the known complete integrability of conformal geodesics.
We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply tran sitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.
93 - Yu Hamada , Jan M. Pawlowski , 2020
We study anomalous chiral symmetry breaking in two-flavour QCD induced by gravitational and QCD-instantons within asymptotically safe gravity within the functional renormalisation group approach. Similarly to QCD-instantons, gravitational ones, assoc iated to a K3-surface connected by a wormhole-like throat in flat spacetime, generate contributions to the t~Hooft coupling proportional to $exp(-1/g_N)$ with the dimensionless Newton coupling $g_N$. Hence, in the asymptotically safe gravity scenario with a non-vanishing fixed point coupling $g_N^*$, the induced t Hooft coupling is finite at the Planck scale, and its size depends on the chosen UV-completion. Within this scenario the gravitational effects on anomalous $U(1)_A$-breaking at the Planck scale may survive at low energy scales. In turn, fermion masses of the order of the Planck scale cannot be present. This constrains the allowed asymptotically safe UV-completion of the Gravity-QCD system. We map-out the parameter regime that is compatible with the existence of light fermions in the low-energy regime.
165 - Maciej Dunajski , Paul Tod 2018
We find necessary and sufficient conditions for existence of a locally isometric embedding of a vacuum space-time into a conformally-flat 5-space. We explicitly construct such embeddings for any spherically symmetric Lorentzian metric in $3+1$ dimens ions as a hypersurface in $R^{4, 1}$. For the Schwarzschild metric the embedding is global, and extends through the horizon all the way to the $r=0$ singularity. We discuss the asymptotic properties of the embedding in the context of Penroses theorem on Schwarzschild causality. We finally show that the Hawking temperature of the Schwarzschild metric agrees with the Unruh temperature measured by an observer moving along hyperbolae in $R^{4, 1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا