ﻻ يوجد ملخص باللغة العربية
We find necessary and sufficient conditions for existence of a locally isometric embedding of a vacuum space-time into a conformally-flat 5-space. We explicitly construct such embeddings for any spherically symmetric Lorentzian metric in $3+1$ dimensions as a hypersurface in $R^{4, 1}$. For the Schwarzschild metric the embedding is global, and extends through the horizon all the way to the $r=0$ singularity. We discuss the asymptotic properties of the embedding in the context of Penroses theorem on Schwarzschild causality. We finally show that the Hawking temperature of the Schwarzschild metric agrees with the Unruh temperature measured by an observer moving along hyperbolae in $R^{4, 1}$.
We study various derivations of Hawking radiation in conformally rescaled metrics. We focus on two important properties, the location of the horizon under a conformal transformation and its associated temperature. We find that the production of Hawki
We construct isometric and conformally isometric embeddings of some gravitational instantons in $mathbb{R}^8$ and $mathbb{R}^7$. In particular we show that the embedding class of the Einstein--Maxwell instanton due to Burns is equal to $3$. For $math
We derive the Hawking radiation spectrum of anyons, namely particles in (2+1)-dimension obeying fractional statistics, from a BTZ black hole, in the tunneling formalism. We examine ways of measuring the spectrum in experimentally realizable systems in the laboratory.
In this paper, the modified Hawking temperature of a static Riemann space-time is studied using the generalized Klein-Gordon equation and the generalized Dirac equation. Applying the Kerner-Mann quantum tunneling method, the modified Hawking temperat
In 1974 Steven Hawking showed that black holes emit thermal radiation, which eventually causes them to evaporate. The problem of the fate of information in this process is known as the black hole information paradox. It inspired a plethora of theoret