ﻻ يوجد ملخص باللغة العربية
The effectiveness of the variational approach a la Feynman is proved in the spin-boson model, i.e. the simplest realization of the Caldeira-Leggett model able to reveal the quantum phase transition from delocalized to localized states and the quantum dissipation and decoherence effects induced by a heat bath. After exactly eliminating the bath degrees of freedom, we propose a trial, non local in time, interaction between the spin and itself simulating the coupling of the two level system with the bosonic bath. It stems from an Hamiltonian where the spin is linearly coupled to a finite number of harmonic oscillators whose frequencies and coupling strengths are variationally determined. We show that a very limited number of these fictitious modes is enough to get a remarkable agreement, up to very low temperatures, with the data obtained by using an approximation-free Monte Carlo approach, predicting: 1) in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition exhibiting the typical universal jump at the critical value; 2) in the sub-Ohmic regime ($s leq 0.5$), mean field quantum phase transitions, with logarithmic corrections for $s=0.5$.
The sub-ohmic spin-boson model is known to possess a novel quantum phase transition at zero temperature between a localised and delocalised phase. We present here an analytical theory based on a variational ansatz for the ground state, which describe
Originating from image recognition, methods of machine learning allow for effective feature extraction and dimensionality reduction in multidimensional datasets, thereby providing an extraordinary tool to deal with classical and quantum models in man
We study the anisotropic spin-boson model (SBM) with the subohmic bath by a numerically exact method based on variational matrix product states. A rich phase diagram is found in the anisotropy-coupling strength plane by calculating several observable
We analytically and numerically study the Loschmidt echo and the dynamical order parameters in a spin chain with a deconfined phase transition between a dimerized state and a ferromagnetic phase. For quenches from a dimerized state to a ferromagnetic
The critical point of a topological phase transition is described by a conformal field theory, where finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling away from criticality and find a