ﻻ يوجد ملخص باللغة العربية
The critical point of a topological phase transition is described by a conformal field theory, where finite-size corrections to energy are uniquely related to its central charge. We investigate the finite-size scaling away from criticality and find a scaling function, which discriminates between phases with different topological indexes. This function appears to be universal for all five Altland-Zirnbauer symmetry classes with non-trivial topology in one spatial dimension. We obtain an analytic form of the scaling function and compare it with numerical results.
A quantum tricritical point is shown to exists in coupled time-reversal symmetry (TRS) broken Majorana chains. The tricriticality separates topologically ordered, symmetry protected topological (SPT), and trivial phases of the system. Here we demonst
For systems with infinite-order phase transitions, in which an order parameter smoothly becomes nonzero, a new observable for finite-size scaling analysis is suggested. By construction this new observable has the favourable property of diverging at t
I study the universal finite-size scaling function for the lowest gap of the quantum Ising chain with a one-parameter family of ``defect boundary conditions, which includes periodic, open, and antiperiodic boundary conditions as special cases. The un
The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the natu
We consider scaling of the entanglement entropy across a topological quantum phase transition in one dimension. The change of the topology manifests itself in a sub-leading term, which scales as $L^{-1/alpha}$ with the size of the subsystem $L$, here