ترغب بنشر مسار تعليمي؟ اضغط هنا

oLMpics -- On what Language Model Pre-training Captures

82   0   0.0 ( 0 )
 نشر من قبل Alon Talmor
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent success of pre-trained language models (LMs) has spurred widespread interest in the language capabilities that they possess. However, efforts to understand whether LM representations are useful for symbolic reasoning tasks have been limited and scattered. In this work, we propose eight reasoning tasks, which conceptually require operations such as comparison, conjunction, and composition. A fundamental challenge is to understand whether the performance of a LM on a task should be attributed to the pre-trained representations or to the process of fine-tuning on the task data. To address this, we propose an evaluation protocol that includes both zero-shot evaluation (no fine-tuning), as well as comparing the learning curve of a fine-tuned LM to the learning curve of multiple controls, which paints a rich picture of the LM capabilities. Our main findings are that: (a) different LMs exhibit qualitatively different reasoning abilities, e.g., RoBERTa succeeds in reasoning tasks where BERT fails completely; (b) LMs do not reason in an abstract manner and are context-dependent, e.g., while RoBERTa can compare ages, it can do so only when the ages are in the typical range of human ages; (c) On half of our reasoning tasks all models fail completely. Our findings and infrastructure can help future work on designing new datasets, models and objective functions for pre-training.



قيم البحث

اقرأ أيضاً

Language model pre-training based on large corpora has achieved tremendous success in terms of constructing enriched contextual representations and has led to significant performance gains on a diverse range of Natural Language Understanding (NLU) ta sks. Despite the success, most current pre-trained language models, such as BERT, are trained based on single-grained tokenization, usually with fine-grained characters or sub-words, making it hard for them to learn the precise meaning of coarse-grained words and phrases. In this paper, we propose a simple yet effective pre-training method named LICHEE to efficiently incorporate multi-grained information of input text. Our method can be applied to various pre-trained language models and improve their representation capability. Extensive experiments conducted on CLUE and SuperGLUE demonstrate that our method achieves comprehensive improvements on a wide variety of NLU tasks in both Chinese and English with little extra inference cost incurred, and that our best ensemble model achieves the state-of-the-art performance on CLUE benchmark competition.
396 - Kaitao Song , Xu Tan , Tao Qin 2019
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk ed Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Specially, we achieve the state-of-the-art accuracy (37.5 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model.
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been tw o lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.
96 - Bin He , Xin Jiang , Jinghui Xiao 2020
Recent studies on pre-trained language models have demonstrated their ability to capture factual knowledge and applications in knowledge-aware downstream tasks. In this work, we present a language model pre-training framework guided by factual knowle dge completion and verification, and use the generative and discriminative approaches cooperatively to learn the model. Particularly, we investigate two learning schemes, named two-tower scheme and pipeline scheme, in training the generator and discriminator with shared parameter. Experimental results on LAMA, a set of zero-shot cloze-style question answering tasks, show that our model contains richer factual knowledge than the conventional pre-trained language models. Furthermore, when fine-tuned and evaluated on the MRQA shared tasks which consists of several machine reading comprehension datasets, our model achieves the state-of-the-art performance, and gains large improvements on NewsQA (+1.26 F1) and TriviaQA (+1.56 F1) over RoBERTa.
Masked Language Model (MLM) framework has been widely adopted for self-supervised language pre-training. In this paper, we argue that randomly sampled masks in MLM would lead to undesirably large gradient variance. Thus, we theoretically quantify the gradient variance via correlating the gradient covariance with the Hamming distance between two different masks (given a certain text sequence). To reduce the variance due to the sampling of masks, we propose a fully-explored masking strategy, where a text sequence is divided into a certain number of non-overlapping segments. Thereafter, the tokens within one segment are masked for training. We prove, from a theoretical perspective, that the gradients derived from this new masking schema have a smaller variance and can lead to more efficient self-supervised training. We conduct extensive experiments on both continual pre-training and general pre-training from scratch. Empirical results confirm that this new masking strategy can consistently outperform standard random masking. Detailed efficiency analysis and ablation studies further validate the advantages of our fully-explored masking strategy under the MLM framework.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا