ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental evidence for orbital magnetic moments generated by moire-scale current loops in twisted bilayer graphene

337   0   0.0 ( 0 )
 نشر من قبل Lin He
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A remarkable property of twisted bilayer graphene (TBG) with small twist angle is the presence of a well-defined and conserved low-energy valley degrees of freedom1, which can potentially bring about new types of valley-associated spontaneous-symmetry breaking phases. Electron-electron (e-e) interactions in the TBG near the magic angle 1.1 degree can lift the valley degeneracy, allowing for the realization of orbital magnetism and topological phases2-11. However, direct measurement of the orbital-based magnetism in the TBG is still lacking up to now. Here we report evidence for orbital magnetic moment generated by the moire-scale current loops in a TBG with a twist angle {theta} ~ 1.68 degree. The valley degeneracy of the 1.68 degree TBG is removed by e-e interactions when its low-energy van Hove singularity (VHS) is nearly half filled. A large and linear response of the valley splitting to magnetic fields is observed, attributing to coupling to the large orbital magnetic moment induced by chiral current loops circulating in the moire pattern. According to our experiment, the orbital magnetic moment is about 10.7 uB per moire supercell. Our result paves the way to explore magnetism that is purely orbital in slightly twisted graphene system.

قيم البحث

اقرأ أيضاً

153 - Chao Ma , Qiyue Wang , Scott Mills 2019
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emerge nt ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moire Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in $K$-theory. The moire band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two $Z_2$ invariants characterize the topology of the moire Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.
We calculate the interactions between the Wannier functions of the 8-orbital model for twisted bilayer graphene (TBG). In this model, two orbitals per valley centered at the AA regions, the AA-p orbitals, account for the most part of the spectral wei ght of the flats bands. Exchange and assisted-hopping terms between these orbitals are found to be small. Therefore, the low energy properties of TBG will be determined by the density-density interactions. These interactions decay with the distance much faster than in the two orbital model, following a 1/r law in the absence of gates. The magnitude of the largest interaction in the model, the onsite term between the flat band orbitals, is controlled by the size of the AA regions and is estimated to be ~ 40 meV. To screen this interaction, the metallic gates have to be placed at a distance smaller than 5 nm. For larger distances only the long-range part of the interaction is substantially screened. The model reproduces the band deformation induced by doping found in other approaches within the Hartree approximation. Such deformation reveals the presence of other orbitals in the flat bands and is sensitive to the inclusion of the interactions involving them.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electroni c structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
96 - Ya-Ning Ren , Chen Lu , Yu Zhang 2019
In the magic-angle twisted bilayer graphene (MA-TBG), strong electron-electron (e-e) correlations caused by the band-flattening lead to many exotic quantum phases such as superconductivity, correlated insulator, ferromagnetism, and quantum anomalous Hall effects, when its low-energy van Hove singularities (VHSs) are partially filled. Here our high-resolution scanning tunneling microscope and spectroscopy measurements demonstrate that the e-e correlation in a non-magic-angle TBG with a twist angle {theta} = 1.49 still plays an important role in determining its electronic properties. Our most interesting observation on that sample is that when one of its VHS is partially filled, the one associated peak in the spectrum splits into four peaks. Our analysis based on the continuum model suggests that such a one-to-four split of the VHS originates from the formation of an interaction-driven spin-valley-polarized metallic state near the VHS, lifting both the spin and valley degeneracies. Our results for this non-magic-angle TBG reveal a new symmetry-breaking phase, which has not been identified in the MA-TBG or in other systems.
We study the effect of an in-plane magnetic field on the non-interacting dispersion of twisted bilayer graphene. Our analysis is rooted in the chirally symmetric continuum model, whose zero-field band structure hosts exactly flat bands and large ener gy gaps at the magic angles. At the first magic angle, the central bands respond to a parallel field by forming a quadratic band crossing point (QBCP) at the Moire Brillouin zone center. Over a large range of fields, the dispersion is invariant with an overall scale set by the magnetic field strength. For deviations from the magic angle and for realistic interlayer couplings, the motion and merging of the Dirac points lying near charge neutrality are discussed in the context of the symmetries, and we show that small magnetic fields are able to induce a qualitative change in the energy spectrum. We conclude with a discussion on the possible ramifications of our study to the interacting ground states of twisted bilayer graphene systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا