ﻻ يوجد ملخص باللغة العربية
Due to the recent advancements in wearables and sensing technology, health scientists are increasingly developing mobile health (mHealth) interventions. In mHealth interventions, mobile devices are used to deliver treatment to individuals as they go about their daily lives. These treatments are generally designed to impact a near time, proximal outcome such as stress or physical activity. The mHealth intervention policies, often called just-in-time adaptive interventions, are decision rules that map an individuals current state (e.g., individuals past behaviors as well as current observations of time, location, social activity, stress and urges to smoke) to a particular treatment at each of many time points. The vast majority of current mHealth interventions deploy expert-derived policies. In this paper, we provide an approach for conducting inference about the performance of one or more such policies using historical data collected under a possibly different policy. Our measure of performance is the average of proximal outcomes over a long time period should the particular mHealth policy be followed. We provide an estimator as well as confidence intervals. This work is motivated by HeartSteps, an mHealth physical activity intervention.
We develop confidence bounds that hold uniformly over time for off-policy evaluation in the contextual bandit setting. These confidence sequences are based on recent ideas from martingale analysis and are non-asymptotic, non-parametric, and valid at
We consider off-policy policy evaluation with function approximation (FA) in average-reward MDPs, where the goal is to estimate both the reward rate and the differential value function. For this problem, bootstrapping is necessary and, along with off
We consider the problem of constrained Markov Decision Process (CMDP) where an agent interacts with a unichain Markov Decision Process. At every interaction, the agent obtains a reward. Further, there are $K$ cost functions. The agent aims to maximiz
Off-policy evaluation provides an essential tool for evaluating the effects of different policies or treatments using only observed data. When applied to high-stakes scenarios such as medical diagnosis or financial decision-making, it is crucial to p
In this work, we consider the problem of estimating a behaviour policy for use in Off-Policy Policy Evaluation (OPE) when the true behaviour policy is unknown. Via a series of empirical studies, we demonstrate how accurate OPE is strongly dependent o