ﻻ يوجد ملخص باللغة العربية
Low frequency perturbations at the boundary of critical quantum chains can be understood in terms of the sequence of boundary conditions imposed by them, as has been previously demonstrated in the Ising and related fermion models. Using extensive numerical simulations, we explore the scaling behavior of the Loschmidt echo under longitudinal field perturbations at the boundary of a critical $mathbb{Z}_3$ Potts model. We show that at times much larger than the relaxation time after a boundary quench, the Loschmidt-echo has a power-law scaling as expected from interpreting the quench as insertion of boundary condition changing operators. Similar scaling is observed as a function of time-period under a low frequency square-wave pulse. We present numerical evidence which indicate that under a sinusoidal or triangular pulse, scaling with time period is modified by Kibble-Zurek effect, again similar to the case of the Ising model. Results confirm the validity, beyond the Ising model, of the treatment of the boundary perturbations in terms of the effect on boundary conditions.
We show that non-Hermitian biorthogonal many-body phase transitions can be characterized by the enhanced decay of Loschmidt echo. The quantum criticality is numerically investigated in a non-Hermitian transverse field Ising model by performing the fi
Any two-dimensional infinite regular lattice G can be produced by tiling the plane with a finite subgraph B of G; we call B a basis of G. We introduce a two-parameter graph polynomial P_B(q,v) that depends on B and its embedding in G. The algebraic c
Is it possible to immediately distinguish a system made by an Avogadros number of identical elements and one with a single additional one? In this work, we show that a simple experiment can do so, yielding two qualitatively and quantitatively differe
We perform a detailed investigation of the scaling Potts field theory using the truncated conformal space approach.
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: