ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal Transport for Probing Quantum Materials

154   0   0.0 ( 0 )
 نشر من قبل Mingda Li
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal transport is less appreciated in probing quantum materials in comparison to electrical transport. This article aims to show the pivotal role that thermal transport may play in understanding quantum materials: the longitudinal thermal transport reflects the itinerant quasiparticles even in an electrical insulating phase, while the transverse thermal transport such as thermal Hall and Nernst effect are tightly linked to nontrivial topology. We discuss three types of examples: quantum spin liquids where thermal transport identifies its existence, superconductors where thermal transport reveals the superconducting gap structure, and topological Weyl semimetals where anomalous Nernst effect is a consequence of nontrivial Berry curvature. We conclude with an outlook of the unique insights thermal transport may offer to probe a much broader category of quantum phenomena.



قيم البحث

اقرأ أيضاً

Quantum embedding methods have become a powerful tool to overcome deficiencies of traditional quantum modelling in materials science. However while these can be accurate, they generally lack the ability to be rigorously improved and still often rely on empirical parameters. Here, we reformulate quantum embedding to ensure the ability to systematically converge properties of real materials with accurate correlated wave function methods, controlled by a single, rapidly convergent parameter. By expanding supercell size, basis set, and the resolution of the fluctuation space of an embedded fragment, we show that the systematic improvability of the approach yields accurate structural and electronic properties of realistic solids without empirical parameters, even across changes in geometry. Results are presented in insulating, semi-metallic, and more strongly correlated regimes, finding state of the art agreement to experimental data.
We report electrical and thermal transport properties of polycrystalline ZrTe3. The polycrystalline sample shows semiconducting behavior in contrast to the established semi-metallic character of the compound. However the charge density wave (CDW) tra nsition remains intact and its clear signatures are observed in thermal conductivity and Seebeck coefficient, in the wide temperature range 50 - 100 K. The thermal conductivity points to additional scattering from the low frequency phonons (phonon softening) in the vicinity of CDW transition. The transport in the polycrystalline compounds is governed by smaller size polarons in the variable range hopping (VRH) region. However, the increasing disorder in polycrystalline compounds suppresses the CDW transition. The VRH behavior is also observed in the Seebeck coefficient data in the similar temperature range. The Seebeck coefficient suggests a competition between the charge carriers (electrons and hole).
We have developed a polarized hard X-ray photoemission (HAXPES) system to study the ground-state symmetry of strongly correlated materials. The linear polarization of the incoming X-ray beam is switched by the transmission-type phase retarder compose d of two diamond (100) crystals. The best degree of the linear polarization $P_L$ is $-0.96$, containing the vertical polarization component of 98%. A newly developed low temperature two-axis manipulator enables easy polar and azimuthal rotations to select the detection direction of photoelectrons. The lowest temperature achieved is 9 K, offering us a chance to access the ground state even for the strongly correlated electron systems in cubic symmetry. The co-axial sample monitoring system with the long-working-distance microscope enables us to keep measuring the same region on the sample surface before and after rotation procedures. Combining this sample monitoring system with a micro-focused X-ray beam by means of an ellipsoidal Kirkpatrick-Baez mirror (25 $mu$m $times$ 25 $mu$m (FWHM)), we have demonstrated the polarized valence-band HAXPES on NiO for voltage application as resistive random access memories to reveal the origin of the metallic spectral weight near the Fermi level.
The trigonal compound EuMg2Bi2 has recently been discussed in terms of its topological band properties. These are intertwined with its magnetic properties. Here detailed studies of the magnetic, thermal, and electronic transport properties of EuMg2Bi 2 single crystals are presented. The Eu{+2} spins-7/2 in EuMg2Bi2 exhibit an antiferromagnetic (AFM) transition at a temperature TN = 6.7 K, as previously reported. By analyzing the anisotropic magnetic susceptibility chi data below TN in terms of molecular-field theory (MFT), the AFM structure is inferred to be a c-axis helix, where the ordered moments in the hexagonal ab-plane layers are aligned ferromagnetically in the ab plane with a turn angle between the moments in adjacent moment planes along the c axis of about 120 deg. The magnetic heat capacity exhibits a lambda anomaly at TN with evidence of dynamic short-range magnetic fluctuations both above and below TN. The high-T limit of the magnetic entropy is close to the theoretical value for spins-7/2. The in-plane electrical resistivity rho(T) data indicate metallic character with a mild and disorder-sensitive upturn below Tmin = 23 K. An anomalous rapid drop in rho(T) on cooling below TN as found in zero field is replaced by a two-step decrease in magnetic fields. The rho(T) measurements also reveal an additional transition below TN in applied fields of unknown origin that is not observed in the other measurements and may be associated with an incommensurate to commensurate AFM transition. The dependence of TN on the c-axis magnetic field Hperp was derived from the field-dependent chi(T), Cp(T), and rho(T) measurements. This TN(Hperp) was found to be consistent with the prediction of MFT for a c-axis helix with S = 7/2 and was used to generate a phase diagram in the Hperp-T plane.
Magnetic tunnel junctions with a ferrimagnetic barrier layer have been studied to understand the role of the barrier layer in the tunneling process - a factor that has been largely overlooked until recently. Epitaxial oxide junctions of highly spin p olarized La0.7Sr0.3MnO3 and Fe3O4 electrodes with magnetic NiMn2O4 (NMO) insulating barrier layers provide a magnetic tunnel junction system in which we can probe the effect of the barrier by comparing junction behavior above and below the Curie temperature of the barrier layer. When the barrier is paramagnetic, the spin polarized transport is dominated by interface scattering and surface spin waves; however, when the barrier is ferrimagnetic, spin flip scattering due to spin waves within the NMO barrier dominates the transport.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا