ﻻ يوجد ملخص باللغة العربية
Let $G=(V,E)$ be a graph and $n$ a positive integer. Let $I_n(G)$ be the abstract simplicial complex whose simplices are the subsets of $V$ that do not contain an independent set of size $n$ in $G$. We study the collapsibility numbers of the complexes $I_n(G)$ for various classes of graphs, focusing on the class of graphs with maximum degree bounded by $Delta$. As an application, we obtain the following result: Let $G$ be a claw-free graph with maximum degree at most $Delta$. Then, every collection of $leftlfloorleft(frac{Delta}{2}+1right)(n-1)rightrfloor+1$ independent sets in $G$ has a rainbow independent set of size $n$.
Given a graph $G$ on the vertex set $V$, the {em non-matching complex} of $G$, $NM_k(G)$, is the family of subgraphs $G subset G$ whose matching number $ u(G)$ is strictly less than $k$. As an attempt to generalize the result by Linusson, Shareshian
Given a digraph $D$ with $m$ arcs and a bijection $tau: A(D)rightarrow {1, 2, ldots, m}$, we say $(D, tau)$ is an antimagic orientation of a graph $G$ if $D$ is an orientation of $G$ and no two vertices in $D$ have the same vertex-sum under $tau$, wh
Given a simple undirected graph $G$ there is a simplicial complex $mathrm{Ind}(G)$, called the independence complex, whose faces correspond to the independent sets of $G$. This is a well studied concept because it provides a fertile ground for intera
Let $G$ be a simple graph with maximum degree $Delta(G)$ and chromatic index $chi(G)$. A classic result of Vizing indicates that either $chi(G )=Delta(G)$ or $chi(G )=Delta(G)+1$. The graph $G$ is called $Delta$-critical if $G$ is connected, $chi(G )
We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been s