ترغب بنشر مسار تعليمي؟ اضغط هنا

How Secure Is Your IoT Network?

107   0   0.0 ( 0 )
 نشر من قبل Josh Payne
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The proliferation of IoT devices in smart homes, hospitals, and enterprise networks is widespread and continuing to increase in a superlinear manner. With this unprecedented growth, how can one assess the security of an IoT network holistically? In this article, we explore two dimensions of security assessment, using vulnerability information of IoT devices and their underlying components ($textit{compositional security scores}$) and SIEM logs captured from the communications and operations of such devices in a network ($textit{dynamic activity metrics}$) to propose the notion of an $textit{attack circuit}$. These measures are used to evaluate the security of IoT devices and the overall IoT network, demonstrating the effectiveness of attack circuits as practical tools for computing security metrics (exploitability, impact, and risk to confidentiality, integrity, and availability) of heterogeneous networks. We propose methods for generating attack circuits with input/output pairs constructed from CVEs using natural language processing (NLP) and with weights computed using standard security scoring procedures, as well as efficient optimization methods for evaluating attack circuits. Our system provides insight into possible attack paths an adversary may utilize based on their exploitability, impact, or overall risk. We have performed experiments on IoT networks to demonstrate the efficacy of the proposed techniques.



قيم البحث

اقرأ أيضاً

215 - P. Papadimitratos , Z.J. Haas , 2009
Secure routing protocols for mobile ad hoc networks have been developed recently, yet, it has been unclear what are the properties they achieve, as a formal analysis of these protocols is mostly lacking. In this paper, we are concerned with this prob lem, how to specify and how to prove the correctness of a secure routing protocol. We provide a definition of what a protocol is expected to achieve independently of its functionality, as well as communication and adversary models. This way, we enable formal reasoning on the correctness of secure routing protocols. We demonstrate this by analyzing two protocols from the literature.
In literature computer architectures are frequently claimed to be highly flexible, typically implying there exist trade-offs between flexibility and performance or energy efficiency. Processor flexibility, however, is not very sharply defined, and as such these claims can not be validated, nor can such hypothetical relations be fully understood and exploited in the design of computing systems. This paper is an attempt to introduce scientific rigour to the notion of flexibility in computing systems.
Many applications and protocols depend on the ability to generate a pool of servers to conduct majority-based consensus mechanisms and often this is done by doing plain DNS queries. A recent off-path attack [1] against NTP and security enhanced NTP w ith Chronos [2] showed that relying on DNS for generating the pool of NTP servers introduces a weak link. In this work, we propose a secure, backward-compatible address pool generation method using distributed DNS-over-HTTPS (DoH) resolvers which is aimed to prevent such attacks against server pool generation.
We demonstrate, for the first time, a secure optical network architecture that combines NFV orchestration and SDN control with quantum key distribution (QKD) technology. A novel time-shared QKD network design is presented as a cost-effective solution for practical networks.
Significant developments have taken place over the past few years in the area of vehicular communication (VC) systems. Now, it is well understood in the community that security and protection of private user information are a prerequisite for the dep loyment of the technology. This is so, precisely because the benefits of VC systems, with the mission to enhance transportation safety and efficiency, are at stake. Without the integration of strong and practical security and privacy enhancing mechanisms, VC systems could be disrupted or disabled, even by relatively unsophisticated attackers. We address this problem within the SeVeCom project, having developed a security architecture that provides a comprehensive and practical solution. We present our results in a set of two papers in this issue. In this first one, we analyze threats and types of adversaries, we identify security and privacy requirements, and we present a spectrum of mechanisms to secure VC systems. We provide a solution that can be quickly adopted and deployed. In the second paper, we present our progress towards the implementation of our architecture and results on the performance of the secure VC system, along with a discussion of upcoming research challenges and our related current results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا