ﻻ يوجد ملخص باللغة العربية
Characterization of microstructures in live tissues is one of the keys to diagnosing early stages of pathology and understanding disease mechanisms. However, the extraction of reliable information on biomarkers based on microstructure details is still a challenge, as the size of features that can be resolved with non-invasive Magnetic Resonance Imaging (MRI) is orders of magnitude larger than the relevant structures. Here we derive from quantum information theory the ultimate precision limits for obtaining such details by MRI probing of water-molecule diffusion. We show that already available MRI pulse sequences can be optimized to attain the ultimate precision limits by choosing control parameters that are uniquely determined by the expected size, the diffusion coefficient and the spin relaxation time $T_{2}$. By attaining the ultimate precision limit per measurement, the number of measurements and the total acquisition time may be drastically reduced compared to the present state of the art. These results will therefore allow MRI to advance towards unravelling a wealth of diagnostic information.
Over the past few decades, researchers have developed several approaches such as the Reference Phantom Method (RPM) to estimate ultrasound attenuation coefficient (AC) and backscatter coefficient (BSC). AC and BSC can help to discriminate pathology f
We present a magnet and high power electronics for Prepolarized Magnetic Resonance Imaging (PMRI) in a home-made, special-purpose preclinical system designed for simultaneous visualization of hard and soft biological tissues. PMRI boosts the signal-t
Purpose: To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs) in magnetic resonance imaging (MRI) and to exemplarily report about our experience with a highly accelerated implementation of the no
Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NVs
Nuclear magnetic resonance (NMR) diffusion measurements are widely used to derive parameters indirectly related to the microstructure of biological tissues and porous media. However, a direct imaging of cell or pore shapes and sizes would be of high