ﻻ يوجد ملخص باللغة العربية
Purpose: To develop generic optimization strategies for image reconstruction using graphical processing units (GPUs) in magnetic resonance imaging (MRI) and to exemplarily report about our experience with a highly accelerated implementation of the non-linear inversion algorithm (NLINV) for dynamic MRI with high frame rates. Methods: The NLINV algorithm is optimized and ported to run on an a multi-GPU single-node server. The algorithm is mapped to multiple GPUs by decomposing the data domain along the channel dimension. Furthermore, the algorithm is decomposed along the temporal domain by relaxing a temporal regularization constraint, allowing the algorithm to work on multiple frames in parallel. Finally, an autotuning method is presented that is capable of combining different decomposition variants to achieve optimal algorithm performance in different imaging scenarios. Results: The algorithm is successfully ported to a multi-GPU system and allows online image reconstruction with high frame rates. Real-time reconstruction with low latency and frame rates up to 30 frames per second is demonstrated. Conclusion: Novel parallel decomposition methods are presented which are applicable to many iterative algorithms for dynamic MRI. Using these methods to parallelize the NLINV algorithm on multiple GPUs it is possible to achieve online image reconstruction with high frame rates.
We report a method for accelerated nanoscale nuclear magnetic resonance imaging by detecting several signals in parallel. Our technique relies on phase multiplexing, where the signals from different nuclear spin ensembles are encoded in the phase of
Characterization of microstructures in live tissues is one of the keys to diagnosing early stages of pathology and understanding disease mechanisms. However, the extraction of reliable information on biomarkers based on microstructure details is stil
We present a magnet and high power electronics for Prepolarized Magnetic Resonance Imaging (PMRI) in a home-made, special-purpose preclinical system designed for simultaneous visualization of hard and soft biological tissues. PMRI boosts the signal-t
The problem of reconstructing an object from the measurements of the light it scatters is common in numerous imaging applications. While the most popular formulations of the problem are based on linearizing the object-light relationship, there is an
Two proof-of-principle experiments towards T1-limited magnetic resonance imaging with NV centers in diamond are demonstrated. First, a large number of Rabi oscillations is measured and it is demonstrated that the hyperfine interaction due to the NVs