ترغب بنشر مسار تعليمي؟ اضغط هنا

Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems with Heterogeneous Sensor Data

364   0   0.0 ( 0 )
 نشر من قبل Boyi Liu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems.



قيم البحث

اقرأ أيضاً

175 - Boyi Liu , Lujia Wang , Ming Liu 2019
Humans are capable of learning a new behavior by observing others perform the skill. Robots can also implement this by imitation learning. Furthermore, if with external guidance, humans will master the new behavior more efficiently. So how can robots implement this? To address the issue, we present Federated Imitation Learning (FIL) in the paper. Firstly, a knowledge fusion algorithm deployed on the cloud for fusing knowledge from local robots is presented. Then, effective transfer learning methods in FIL are introduced. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning. FIL considers information privacy and data heterogeneity when robots share knowledge. It is suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a simplified self-driving task for robots (cars). The experimental results demonstrate that FIL is capable of increasing imitation learning of local robots in cloud robotic systems.
A technological revolution is occurring in the field of robotics with the data-driven deep learning technology. However, building datasets for each local robot is laborious. Meanwhile, data islands between local robots make data unable to be utilized collaboratively. To address this issue, the work presents Peer-Assisted Robotic Learning (PARL) in robotics, which is inspired by the peer-assisted learning in cognitive psychology and pedagogy. PARL implements data collaboration with the framework of cloud robotic systems. Both data and models are shared by robots to the cloud after semantic computing and training locally. The cloud converges the data and performs augmentation, integration, and transferring. Finally, fine tune this larger shared dataset in the cloud to local robots. Furthermore, we propose the DAT Network (Data Augmentation and Transferring Network) to implement the data processing in PARL. DAT Network can realize the augmentation of data from multi-local robots. We conduct experiments on a simplified self-driving task for robots (cars). DAT Network has a significant improvement in the augmentation in self-driving scenarios. Along with this, the self-driving experimental results also demonstrate that PARL is capable of improving learning effects with data collaboration of local robots.
151 - Dandan Zhang , Yu Zheng , Qiang Li 2021
To accurately pour drinks into various containers is an essential skill for service robots. However, drink pouring is a dynamic process and difficult to model. Traditional deep imitation learning techniques for implementing autonomous robotic pouring have an inherent black-box effect and require a large amount of demonstration data for model training. To address these issues, an Explainable Hierarchical Imitation Learning (EHIL) method is proposed in this paper such that a robot can learn high-level general knowledge and execute low-level actions across multiple drink pouring scenarios. Moreover, with EHIL, a logical graph can be constructed for task execution, through which the decision-making process for action generation can be made explainable to users and the causes of failure can be traced out. Based on the logical graph, the framework is manipulable to achieve different targets while the adaptability to unseen scenarios can be achieved in an explainable manner. A series of experiments have been conducted to verify the effectiveness of the proposed method. Results indicate that EHIL outperforms the traditional behavior cloning method in terms of success rate, adaptability, manipulability and explainability.
99 - Li Li , Moming Duan , Duo Liu 2021
Federated Learning (FL) is a novel distributed machine learning which allows thousands of edge devices to train model locally without uploading data concentrically to the server. But since real federated settings are resource-constrained, FL is encou ntered with systems heterogeneity which causes a lot of stragglers directly and then leads to significantly accuracy reduction indirectly. To solve the problems caused by systems heterogeneity, we introduce a novel self-adaptive federated framework FedSAE which adjusts the training task of devices automatically and selects participants actively to alleviate the performance degradation. In this work, we 1) propose FedSAE which leverages the complete information of devices historical training tasks to predict the affordable training workloads for each device. In this way, FedSAE can estimate the reliability of each device and self-adaptively adjust the amount of training load per client in each round. 2) combine our framework with Active Learning to self-adaptively select participants. Then the framework accelerates the convergence of the global model. In our framework, the server evaluates devices value of training based on their training loss. Then the server selects those clients with bigger value for the global model to reduce communication overhead. The experimental result indicates that in a highly heterogeneous system, FedSAE converges faster than FedAvg, the vanilla FL framework. Furthermore, FedSAE outperforms than FedAvg on several federated datasets - FedSAE improves test accuracy by 26.7% and reduces stragglers by 90.3% on average.
Learning accurate dynamics models is necessary for optimal, compliant control of robotic systems. Current approaches to white-box modeling using analytic parameterizations, or black-box modeling using neural networks, can suffer from high bias or hig h variance. We address the need for a flexible, gray-box model of mechanical systems that can seamlessly incorporate prior knowledge where it is available, and train expressive function approximators where it is not. We propose to parameterize a mechanical system using neural networks to model its Lagrangian and the generalized forces that act on it. We test our method on a simulated, actuated double pendulum. We show that our method outperforms a naive, black-box model in terms of data-efficiency, as well as performance in model-based reinforcement learning. We also conduct a systematic study of our methods ability to incorporate available prior knowledge about the system to improve data efficiency.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا