ﻻ يوجد ملخص باللغة العربية
Manipulation of a quantum system requires the knowledge of how it evolves. To impose that the dynamics of a system becomes a particular target operation (for any preparation of the system), it may be more useful to have an equation of motion for the dynamics itself--rather than the state. Here we develop a Markovian master equation for the process matrix of an open system, which resembles the Lindblad Markovian master equation. We employ this equation to introduce a scheme for optimal local coherent process control at target times, and extend the Krotov technique to obtain optimal control. We illustrate utility of this framework through several quantum coherent control scenarios, such as optimal decoherence suppression, gate simulation, and passive control of the environment, in all of which we aim to simulate a given terminal process at a given final time.
Based on a recently developed notion of physical realizability for quantum linear stochastic systems, we formulate a quantum LQG optimal control problem for quantum linear stochastic systems where the controller itself may also be a quantum system an
A completely depolarising quantum channel always outputs a fully mixed state and thus cannot transmit any information. In a recent Letter [D. Ebler et al., Phys. Rev. Lett. 120, 120502 (2018)], it was however shown that if a quantum state passes thro
In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (
We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong ext
We suggest a new method for quantum optical control with nanoscale resolution. Our method allows for coherent far-field manipulation of individual quantum systems with spatial selectivity that is not limited by the wavelength of radiation and can, in