ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamics of quantum systems under dynamical control

158   0   0.0 ( 0 )
 نشر من قبل David Gelbwaser-Klimovsky
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review the debated rapport between thermodynamics and quantum mechanics is addressed in the framework of the theory of periodically-driven/controlled quantum-thermodynamic machines. The basic model studied here is that of a two-level system (TLS), whose energy is periodically modulated while the system is coupled to thermal baths. When the modulation interval is short compared to the bath memory time, the system-bath correlations are affected, thereby causing cooling or heating of the TLS, depending on the interval. In steady state, a periodically-modulated TLS coupled to two distinct baths constitutes the simplest quantum heat machine (QHM) that may operate as either an engine or a refrigerator, depending on the modulation rate. We find their efficiency and power-output bounds and the conditions for attaining these bounds. An extension of this model to multilevel systems shows that the QHM power output can be boosted by the multilevel degeneracy. These results are used to scrutinize basic thermodynamic principles: (i) Externally-driven/modulated QHMs may attain the Carnot efficiency bound, but when the driving is done by a quantum device (piston), the efficiency strongly depends on its initial quantum state. Such dependence has been unknown thus far. (ii) The refrigeration rate effected by QHMs does not vanish as the temperature approaches absolute zero for certain quantized baths, e.g., magnons, thous challenging Nernsts unattainability principle. (iii) System-bath correlations allow more work extraction under periodic control than that expected from the Szilard-Landauer principle, provided the period is in the non-Markovian domain. Thus, dynamically-controlled QHMs may benefit from hitherto unexploited thermodynamic resources.


قيم البحث

اقرأ أيضاً

We analyze quantum state-transfer optimization within hybrid open systems, from a noisy (write-in) qubit to its quiet counterpart (storage qubit). Intriguing interplay is revealed between our ability to avoid bath-induced errors that profoundly depen d on the bath-memory time and the limitations imposed by leakage out of the operational subspace. Counterintuitively, under no circumstances is the fastest transfer optimal (for a given transfer energy).
Manipulation of a quantum system requires the knowledge of how it evolves. To impose that the dynamics of a system becomes a particular target operation (for any preparation of the system), it may be more useful to have an equation of motion for the dynamics itself--rather than the state. Here we develop a Markovian master equation for the process matrix of an open system, which resembles the Lindblad Markovian master equation. We employ this equation to introduce a scheme for optimal local coherent process control at target times, and extend the Krotov technique to obtain optimal control. We illustrate utility of this framework through several quantum coherent control scenarios, such as optimal decoherence suppression, gate simulation, and passive control of the environment, in all of which we aim to simulate a given terminal process at a given final time.
Quantum systems can be controlled by other quantum systems in a reversible way, without any information leaking to the outside of the system-controller compound. Such coherent quantum control is deterministic, is less noisy than measurement-based fee dback control, and has potential applications in a variety of quantum technologies, including quantum computation, quantum communication and quantum metrology. Here we introduce a coherent feedback protocol, consisting of a sequence of identical interactions with controlling quantum systems, that steers a quantum system from an arbitrary initial state towards a target state. We determine the broad class of such coherent feedback channels that achieve convergence to the target state, and then stabilise as well as protect it against noise. Our results imply that also weak system-controller interactions can counter noise if they occur with suitably high frequency. We provide an example of a control scheme that does not require knowledge of the target state encoded in the controllers, which could be the result of a quantum computation. It thus provides a mechanism for autonomous, purely quantum closed-loop control.
We address the out-of-equilibrium thermodynamics of an isolated quantum system consisting of a cavity optomechanical device. We explore the dynamical response of the system when driven out of equilibrium by a sudden quench of the coupling parameter a nd compute analytically the full distribution of the work generated by the process. We consider linear and quadratic optomechanical coupling, where the cavity field is parametrically coupled to either the position or the square of the position of a mechanical oscillator, respectively. In the former case we find that the average work generated by the quench is zero, whilst the latter leads to a non-zero average value. Through fluctuations theorems we access the most relevant thermodynamical figures of merit, such as the free energy difference and the amount of irreversible work generated. We thus provide a full characterization of the out-of-equilibrium thermodynamics in the quantum regime for nonlinearly coupled bosonic modes. Our study is the first due step towards the construction and full quantum analysis of an optomechanical machine working fully out of equilibrium.
We demonstrate the effectiveness of quantum optimal control techniques in harnessing irreversibility generated by non-equilibrium processes, implemented in unitarily evolving quantum many-body systems. We address the dynamics of a finite-size quantum Ising model subjected to finite-time transformations, which unavoidably generate irreversibility. We show that work can be generated through such transformation by means of optimal controlled quenches, while quenching the degree of irreversibility to very low values, thus boosting the efficiency of the process and paving the way to a fully controllable non-equilibrium thermodynamics of quantum processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا