ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Analysis of $SU(2)$ with 1 Adjoint Dirac Flavor

69   0   0.0 ( 0 )
 نشر من قبل Anthony Grebe
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently $SU(2)$ Yang-Mills theory with one massless adjoint Dirac quark flavor emerges as a novel critical theory that can describe the evolution between a trivial insulator and a topological insulator in AIII class in $3+1$ dimensions. There are several classes of conjectured infrared dynamics for this theory. One possibility is that the theory undergoes spontaneous chiral symmetry breaking, with two massless Goldstone bosons (the scalar diquark and its antiparticle) in the infrared. Another scenario, which is suggested by previous lattice studies by Athenodorou et al., is that the IR sector of the theory is a strongly interacting conformal field theory as the quark mass vanishes. The most recent theoretical proposals argue for a case that in the infrared a composite fermion composed of two quarks and an antiquark becomes massless and non-interacting as the quark mass goes to zero, while other sectors are decoupled from this low-energy fermion. This work expands upon previous studies by including the composite fermion to investigate which of these three potential scenarios captures the infrared behavior of this theory.



قيم البحث

اقرأ أيضاً

239 - Ari J. Hietanen 2008
An SU(2) gauge theory with two fermions transforming under the adjoint representation of the gauge group may appear conformal or almost conformal in the infrared. We use lattice simulations to study the spectrum of this theory and present results on the masses of several gauge singlet states as a function of the physical quark mass determined through the axial Ward identity and find indications of a change from chiral symmetry breaking to a phase consistent with conformal behaviour at beta_L ~ 2. However, the measurement of the spectrum is not alone sufficient to decisively confirm the existence of conformal fixed point in this theory as we show by comparing to similar measurements with fundamental fermions. Based on the results we sketch a possible phase diagram of this lattice theory and discuss the applicability and importance of these results for the future measurement of the evolution of the coupling constant.
We present some results for SU(2) with one adjoint Dirac flavour from lattice studies. Data for the spectroscopy, the static potential, topological charge, and the anomalous dimension of the fermionic condensate are included. Our findings are found t o be in- consistent with conventional confining behaviour, instead pointing tentatively towards a theory lying within or very near the onset of the conformal window, with an anomalous dimension of the fermionic condensate of almost 1. Implications of these findings on the building of models of strongly-interacting dynamics beyond the standard model are discussed.
SU(2) gauge theory with one Dirac flavour in the adjoint representation is investigated on a lattice. Initial results for the gluonic and mesonic spectrum, static potential from Wilson and Polyakov loops, and the anomalous dimension of the fermionic condensate from the Dirac mode number are presented. The results found are not consistent with conventional confining behaviour, instead tentatively pointing towards a theory lying within or very near the onset of the conformal window, with the anomalous dimension of the fermionic condensate in the range $0.9 lesssim gamma_* lesssim 0.95$. The implications of our work for building a viable theory of strongly interacting dynamics beyond the standard model are discussed.
We investigate the quark mass dependence of meson and baryon masses obtained from 2+1 flavor dynamical quark simulations performed by the PACS-CS Collaboration. With the use of SU(2) and SU(3) chiral perturbation theories up to NLO, we examine the ch iral behavior of the pseudoscalar meson masses and the decay constants in terms of the degenerate up-down quark mass ranging form 3 MeV to 24 MeV and two choices of the strange quark mass around the physical value. We discuss the convergence of the SU(2) and SU(3) chiral expansions and present the results for the low energy constants. We find that the SU(3) expansion is not convergent at NLO for the physical strange quark mass. The chiral behavior of the nucleon mass is also discussed based on the SU(2) heavy baryon chiral perturbation theory up to NNLO. Our results show that the expansion is well behaved only up to m_pi^2 ~ 0.2 GeV^2.
We measure the evolution of the coupling constant using the Schroedinger functional method in the lattice formulation of SU(2) gauge theory with two massless Dirac fermions in the adjoint representation. We observe strong evidence for an infrared fix ed point, where the theory becomes conformal. We measure the continuum beta-function and the coupling constant as a function of the energy scale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا