ﻻ يوجد ملخص باللغة العربية
We investigate the quark mass dependence of meson and baryon masses obtained from 2+1 flavor dynamical quark simulations performed by the PACS-CS Collaboration. With the use of SU(2) and SU(3) chiral perturbation theories up to NLO, we examine the chiral behavior of the pseudoscalar meson masses and the decay constants in terms of the degenerate up-down quark mass ranging form 3 MeV to 24 MeV and two choices of the strange quark mass around the physical value. We discuss the convergence of the SU(2) and SU(3) chiral expansions and present the results for the low energy constants. We find that the SU(3) expansion is not convergent at NLO for the physical strange quark mass. The chiral behavior of the nucleon mass is also discussed based on the SU(2) heavy baryon chiral perturbation theory up to NNLO. Our results show that the expansion is well behaved only up to m_pi^2 ~ 0.2 GeV^2.
We have simulated QCD using 2+1 flavors of domain wall quarks on a $(2.74 {rm fm})^3$ volume with an inverse lattice scale of $a^{-1} = 1.729(28)$ GeV. The up and down (light) quarks are degenerate in our calculations and we have used four values for
We calculate the vector meson masses in $N_{rm f} = 2+1$ Wilson chiral perturbation theory at next-to-leading order. Generalizing the framework of heavy vector meson chiral perturbation theory, the quark mass and the lattice cutoff dependence of the
We measure the pion mass and decay constant on ensembles generated by the Wuppertal-Budapest Collaboration, and extract the NLO low-energy constants l_3 and l_4 of SU(2) chiral perturbation theory. The data are generated in 2+1 flavor simulations wit
We perform a detailed, fully-correlated study of the chiral behavior of the pion mass and decay constant, based on 2+1 flavor lattice QCD simulations. These calculations are implemented using tree-level, O(a)-improved Wilson fermions, at four values
We consider 2+1 flavor Wilson Chiral Perturbation Theory including the lattice spacing contributions of O($a^{2}$). We adopt a power counting appropriate for the unquenched lattice simulations carried out by the CP-PACS/JLQCD collaboration and comput