ﻻ يوجد ملخص باللغة العربية
It is shown that the orbits of the space of local deformations of the Lie algebra $bar{A_5}$ over an algebraically closed field $K$ of characteristic 2 with respect to the automorphism group $mathrm{PGL} (6)$ correspond to $mathrm{GL} (V)$-orbits of tri-vectors of a 6-dimensional space. For local deformations corresponding to tri-vectors of rank $rho <6$, integrability is proved and global deformations are constructed.
Let $L$ be a Lie algebra of Block type over $C$ with basis ${L_{alpha,i},|,alpha,iinZ}$ and brackets $[L_{alpha,i},L_{beta,j}]=(beta(i+1)-alpha(j+1))L_{alpha+beta,i+j}$. In this paper, we shall construct a formal distribution Lie algebra of $L$. Then
Let $(L, alpha)$ be a Hom-Lie-Yamaguti superalgebra. We first introduce the representation and cohomology theory of Hom-Lie-Yamaguti superalgebras. Furthermore, we introduce the notions of generalized derivations and representations of $(L, alpha)$ a
In this paper, we define a new cohomology theory for multiplicative Hom-pre-Lie algebras which controls deformations of Hom-pre-Lie algebra structure. This new cohomology is a natural one considering the structure map $alpha$. We show this new cohomo
Let $T$ be a $delta$-Jordan Lie supertriple system. We first introduce the notions of generalized derivations and representations of $T$ and present some properties. Also, we study the low dimension cohomology and the coboundary operator of $T$, and
In this paper, first we give the cohomologies of an $n$-Hom-Lie algebra and introduce the notion of a derivation of an $n$-Hom-Lie algebra. We show that a derivation of an $n$-Hom-Lie algebra is a $1$-cocycle with the coefficient in the adjoint repre