ترغب بنشر مسار تعليمي؟ اضغط هنا

Derivations and deformations of $delta$-Jordan Lie supertriple systems

75   0   0.0 ( 0 )
 نشر من قبل Shuangjian Guo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $T$ be a $delta$-Jordan Lie supertriple system. We first introduce the notions of generalized derivations and representations of $T$ and present some properties. Also, we study the low dimension cohomology and the coboundary operator of $T$, and then we investigate the deformations and Nijenhuis operators of $T$ by choosing some suitable cohomology.



قيم البحث

اقرأ أيضاً

In this paper, we introduce the notion Lie-derivation. This concept generalizes derivations for non-Lie Leibniz algebras. We study these Lie-derivations in the case where their image is contained in the Lie-center, call them Lie-central derivations. We provide a characterization of Lie-stem Leibniz algebras by their Lie-central derivations, and prove several properties of the Lie algebra of Lie-central derivations for Lie-nilpotent Leibniz algebras of class 2. We also introduce ${sf ID}_*-Lie$-derivations. A ${sf ID}_*-Lie$-derivation of a Leibniz algebra G is a Lie-derivation of G in which the image is contained in the second term of the lower Lie-central series of G, and that vanishes on Lie-central elements. We provide an upperbound for the dimension of the Lie algebra $ID_*^{Lie}(G)$ of $ID_*Lie$-derivation of G, and prove that the sets $ID_*^{Lie}(G)$ and $ID_*^{Lie}(G)$ are isomorphic for any two Lie-isoclinic Leibniz algebras G and Q.
In this article we develop an approach to deformations of the Witt and Virasoro algebras based on $sigma$-derivations. We show that $sigma$-twisted Jacobi type identity holds for generators of such deformations. For the $sigma$-twisted generalization of Lie algebras modeled by this construction, we develop a theory of central extensions. We show that our approach can be used to construct new deformations of Lie algebras and their central extensions, which in particular include naturally the $q$-deformations of the Witt and Virasoro algebras associated to $q$-difference operators, providing also corresponding q-deformed Jacobi identities.
64 - Hongliang Chang , Yin Chen , 2020
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime ring s and unites many well-known generalized derivations that have already appeared extensively in the study of Lie algebras and other nonassociative algebras. After exploiting fundamental properties, we introduce and analyze their interiors, especially focusing on the rationality of the corresponding Hilbert series. Applying techniques in computational ideal theory we develop an approach to explicitly compute these new generalized derivations for the three-dimensional special linear Lie algebra over the complex field.
We show that in the class of solvable Lie algebras there exist algebras which admit local derivations which are not ordinary derivation and also algebras for which every local derivation is a derivation. We found necessary and sufficient conditions u nder which any local derivation of solvable Lie algebras with abelian nilradical and one-dimensional complementary space is a derivation. Moreover, we prove that every local derivation on a finite-dimensional solvable Lie algebra with model nilradical and maximal dimension of complementary space is a derivation.
In this paper, we study the structure of 3-Lie algebras with involutive derivations. We prove that if $A$ is an $m$-dimensional 3-Lie algebra with an involutive derivation $D$, then there exists a compatible 3-pre-Lie algebra $(A, { , , , }_D)$ such that $A$ is the sub-adjacent 3-Lie algebra, and there is a local cocycle $3$-Lie bialgebraic structure on the $2m$-dimensional semi-direct product 3-Lie algebra $Altimes_{ad^*} A^*$, which is associated to the adjoint representation $(A, ad)$. By means of involutive derivations, the skew-symmetric solution of the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra $Altimes_{ad^*}A^*$, a class of 3-pre-Lie algebras, and eight and ten dimensional local cocycle 3-Lie bialgebras are constructed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا