ﻻ يوجد ملخص باللغة العربية
Pseudo-Random Numbers Generators (PRNGs) are algorithms produced to generate long sequences of statistically uncorrelated numbers, i.e. Pseudo-Random Numbers (PRNs). These numbers are widely employed in mid-level cryptography and in software applications. Test suites are used to evaluate PRNGs quality by checking statistical properties of the generated sequences. Machine learning techniques are often used to break these generators, for instance approximating a certain generator or a certain sequence using a neural network. But what about using machine learning to generate PRNs generators? This paper proposes a Reinforcement Learning (RL) approach to the task of generating PRNGs from scratch by learning a policy to solve an N-dimensional navigation problem. In this context, N is the length of the period of the generated sequence, and the policy is iteratively improved using the average value of an appropriate test suite run over that period. Aim of this work is to demonstrate the feasibility of the proposed approach, to compare it with classical methods, and to lay the foundation of a research path which combines RL and PRNGs.
A Pseudo-Random Number Generator (PRNG) is any algorithm generating a sequence of numbers approximating properties of random numbers. These numbers are widely employed in mid-level cryptography and in software applications. Test suites are used to ev
The influence maximization (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence. In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networ
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS),
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data. Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms take the approach of constraining or regularizing the policy w