ترغب بنشر مسار تعليمي؟ اضغط هنا

Pseudo Random Number Generation: a Reinforcement Learning approach

126   0   0.0 ( 0 )
 نشر من قبل Luca Pasqualini
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pseudo-Random Numbers Generators (PRNGs) are algorithms produced to generate long sequences of statistically uncorrelated numbers, i.e. Pseudo-Random Numbers (PRNs). These numbers are widely employed in mid-level cryptography and in software applications. Test suites are used to evaluate PRNGs quality by checking statistical properties of the generated sequences. Machine learning techniques are often used to break these generators, for instance approximating a certain generator or a certain sequence using a neural network. But what about using machine learning to generate PRNs generators? This paper proposes a Reinforcement Learning (RL) approach to the task of generating PRNGs from scratch by learning a policy to solve an N-dimensional navigation problem. In this context, N is the length of the period of the generated sequence, and the policy is iteratively improved using the average value of an appropriate test suite run over that period. Aim of this work is to demonstrate the feasibility of the proposed approach, to compare it with classical methods, and to lay the foundation of a research path which combines RL and PRNGs.

قيم البحث

اقرأ أيضاً

A Pseudo-Random Number Generator (PRNG) is any algorithm generating a sequence of numbers approximating properties of random numbers. These numbers are widely employed in mid-level cryptography and in software applications. Test suites are used to ev aluate PRNGs quality by checking statistical properties of the generated sequences. These sequences are commonly represented bit by bit. This paper proposes a Reinforcement Learning (RL) approach to the task of generating PRNGs from scratch by learning a policy to solve a partially observable Markov Decision Process (MDP), where the full state is the period of the generated sequence and the observation at each time step is the last sequence of bits appended to such state. We use a Long-Short Term Memory (LSTM) architecture to model the temporal relationship between observations at different time steps, by tasking the LSTM memory with the extraction of significant features of the hidden portion of the MDPs states. We show that modeling a PRNG with a partially observable MDP and a LSTM architecture largely improves the results of the fully observable feedforward RL approach introduced in previous work.
The influence maximization (IM) problem aims at finding a subset of seed nodes in a social network that maximize the spread of influence. In this study, we focus on a sub-class of IM problems, where whether the nodes are willing to be the seeds when being invited is uncertain, called contingency-aware IM. Such contingency aware IM is critical for applications for non-profit organizations in low resource communities (e.g., spreading awareness of disease prevention). Despite the initial success, a major practical obstacle in promoting the solutions to more communities is the tremendous runtime of the greedy algorithms and the lack of high performance computing (HPC) for the non-profits in the field -- whenever there is a new social network, the non-profits usually do not have the HPCs to recalculate the solutions. Motivated by this and inspired by the line of works that use reinforcement learning (RL) to address combinatorial optimization on graphs, we formalize the problem as a Markov Decision Process (MDP), and use RL to learn an IM policy over historically seen networks, and generalize to unseen networks with negligible runtime at test phase. To fully exploit the properties of our targeted problem, we propose two technical innovations that improve the existing methods, including state-abstraction and theoretically grounded reward shaping. Empirical results show that our method achieves influence as high as the state-of-the-art methods for contingency-aware IM, while having negligible runtime at test phase.
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy. Reinforcement learning (RL) is a trending data-driven approach for adaptive traffic signal control in complex urban traffic networ ks. Although the development of deep neural networks (DNN) further enhances its learning capability, there are still some challenges in applying deep RLs to transportation networks with multiple signalized intersections, including non-stationarity environment, exploration-exploitation dilemma, multi-agent training schemes, continuous action spaces, etc. In order to address these issues, this paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms. MADDPG has a centralized learning and decentralized execution paradigm in which critics use additional information to streamline the training process, while actors act on their own local observations. The model is evaluated via simulation on the Simulation of Urban MObility (SUMO) platform. Model comparison results show the efficiency of the proposed algorithm in controlling traffic lights.
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS), assuming the existence of a central entity to perform data analysis and identify threats. However, such IDS may not always be feasible, mainly due to spread of data across multiple sources and gathering at central node can be costly. Also, the earlier works primarily focused on improving True Positive Rate (TPR) and ignored the False Positive Rate (FPR), which is also essential to avoid unnecessary downtime of the systems. In this paper, we first present an architecture for IDS based on hybrid ensemble model, named PHEC, which gives improved performance compared to state-of-the-art architectures. We then adapt this model to a federated learning framework that performs local training and aggregates only the model parameters. Next, we propose Noise-Tolerant PHEC in centralized and federated settings to address the label-noise problem. The proposed idea uses classifiers using weighted convex surrogate loss functions. Natural robustness of KNN classifier towards noisy data is also used in the proposed architecture. Experimental results on four benchmark datasets drawn from various security attacks show that our model achieves high TPR while keeping FPR low on noisy and clean data. Further, they also demonstrate that the hybrid ensemble models achieve performance in federated settings close to that of the centralized settings.
Offline reinforcement learning (RL) defines the task of learning from a fixed batch of data. Due to errors in value estimation from out-of-distribution actions, most offline RL algorithms take the approach of constraining or regularizing the policy w ith the actions contained in the dataset. Built on pre-existing RL algorithms, modifications to make an RL algorithm work offline comes at the cost of additional complexity. Offline RL algorithms introduce new hyperparameters and often leverage secondary components such as generative models, while adjusting the underlying RL algorithm. In this paper we aim to make a deep RL algorithm work while making minimal changes. We find that we can match the performance of state-of-the-art offline RL algorithms by simply adding a behavior cloning term to the policy update of an online RL algorithm and normalizing the data. The resulting algorithm is a simple to implement and tune baseline, while more than halving the overall run time by removing the additional computational overheads of previous methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا