ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of the endpoint of the first order deconfiniement phase transition in the heavy quark region of QCD

115   0   0.0 ( 0 )
 نشر من قبل Shinji Ejiri
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the endpoint of the first order deconfinement phase transition of 2 and 2+1 flavor QCD in the heavy quark region. We perform simulations of quenched QCD and apply the reweighting method to study the heavy quark region. The quark determinant for the reweighting is evaluated by a hopping parameter expansion. To reduce the overlap problem, we introduce an external source term of the Polyakov loop in the simulation. We study the location of critical point at which the first order phase transition changes to crossover by investigating the histogram of the Polyakov loop and applying the finite-size scaling analysis. We estimate the truncation error of the hopping parameter expansion, and discuss the lattice spacing dependence and the spatial volume dependence in the result of the critical point.



قيم البحث

اقرأ أيضاً

We study the end point of the first-order deconfinement phase transition in two and 2+1 flavor QCD in the heavy quark region of the quark mass parameter space. We determine the location of critical point at which the first-order deconfinement phase t ransition changes to crossover, and calculate the pseudo-scalar meson mass at the critical point. Performing quenched QCD simulations on lattices with the temporal extents Nt=6 and 8, the effects of heavy quarks are determined using the reweighting method. We adopt the hopping parameter expansion to evaluate the quark determinants in the reweighting factor. We estimate the truncation error of the hopping parameter expansion by comparing the results of leading and next-to-leading order calculations, and study the lattice spacing dependence as well as the spatial volume dependence of the result for the critical point. The overlap problem of the reweighting method is also examined. Our results for Nt=4 and 6 suggest that the critical quark mass decreases as the lattice spacing decreases and increases as the spatial volume increases.
150 - H. Saito , S. Aoki , K. Kanaya 2012
We extend our previous study of the QCD phase structure in the heavy quark region to non-zero chemical potentials. To identify the critical point where the first order deconfining transition terminates, we study an effective potential defined by the probability distribution function of the plaquette and the Polyakov loop. The reweighting technique is shown to be powerful in evaluating the effective potential in a wide range of the plaquette and Polyakov loop expectation values. We adopt the cumulant expansion to overcome the sign problem in the calculation of complex phase of the quark determinant. We find that the method provides us with an intuitive and powerful way to study the phase structure. We estimate the location of the critical point at finite chemical potential in the heavy quark region.
The nature of the QCD chiral phase transition in the limit of vanishing quark masses has remained elusive for a long time, since it cannot be simulated directly on the lattice and is strongly cutoff-dependent. We report on a comprehensive ongoing stu dy using unimproved staggered fermions with $N_text{f}in[2,8]$ mass-degenerate flavours on $N_tauin{4,6,8}$ lattices, in which we locate the chiral critical surface separating regions with first-order transitions from crossover regions in the bare parameter space of the lattice theory. Employing the fact that it terminates in a tricritical line, this surface can be extrapolated to the chiral limit using tricritical scaling with known exponents. Knowing the order of the transitions in the lattice parameter space, conclusions for approaching the continuum chiral limit in the proper order can be drawn. While a narrow first-order region cannot be ruled out, we find initial evidence consistent with a second-order chiral transition in all massless theories with $N_text{f}leq 6$, and possibly up to the onset of the conformal window at $9lesssim N_text{f}^*lesssim 12$. A reanalysis of already published $mathcal{O}(a)$-improved $N_text{f}=3$ Wilson data on $N_tauin[4,12]$ is also consistent with tricritical scaling, and the associated change from first to second-order on the way to the continuum chiral limit. We discuss a modified Columbia plot and a phase diagram for many-flavour QCD that reflect these possible features.
We investigate the phase transitions of (2+Nf)-flavor QCD, where two light flavors and Nf massive flavors exist, aiming to understand the phase structure of (2+1)-flavor QCD. Performing simulations of 2-flavor QCD with improved staggered and Wilson f ermions and using the reweighting method, we calculate probability distribution functions in the many-flavor QCD. Through the shape of distribution functions, we determine the critical surface terminating first order phase transitions in the parameter space of the light quark mass, heavy quark mass and the chemical potential, and find that the first order region becomes larger with Nf. We then study the critical surface at finite density for large Nf and the first order region is found to become wider with the increasing chemical potential. On the other hand, the light quark mass dependence of the critical mass of heavy quarks seems weak in the region we investigated. The result of this weak dependence suggests that the critical mass of heavy quark remains finite in the chiral limit of 2-flavors and there exists a second order transition region on the line of the 2-flavor massless limit above the tri-critical point. Moreover, we extend the study of 2-flavor QCD at finite density to the case of a complex chemical potential and investigate the singularities where the partition function vanishes, so-called Lee-Yang zeros. The plaquette effective potential is computed in the complex plane. We find that the shape of the effective potential changes from single-well on the real axis to double-well at large imaginary chemical potential and the double-well potential causes the singularities.
Finite-size scaling is investigated in detail around the critical point in the heavy-quark region of nonzero temperature QCD. Numerical simulations are performed with large spatial volumes up to the aspect ratio $N_s/N_t=12$ at a fixed lattice spacin g with $N_t=4$. We show that the Binder cumulant and the distribution function of the Polyakov loop follow the finite-size scaling in the $Z(2)$ universality class for large spatial volumes with $N_s/N_t ge 9$, while, for $N_s/N_t le 8$, the Binder cumulant becomes inconsistent with the $Z(2)$ scaling. To realize the large-volume simulations in the heavy-quark region, we adopt the hopping tails expansion for the quark determinant: We generate gauge configurations using the leading order action including the Polyakov loop term for $N_t=4$, and incorporate the next-to-leading order effects in the measurements by the multipoint reweighting method. We find that the use of the leading-order configurations is crucially effective in suppressing the overlapping problem in the reweighting and thus reducing the statistical errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا