ﻻ يوجد ملخص باللغة العربية
We present a novel deep learning (DL) approach to produce highly accurate predictions of macroscopic physical properties of solid solution binary alloys and magnetic systems. The major idea is to make use of the correlations between different physical properties in alloy systems to improve the prediction accuracy of neural network (NN) models. We use multitasking NN models to simultaneously predict the total energy, charge density and magnetic moment. These physical properties mutually serve as constraints during the training of the multitasking NN, resulting in more reliable DL models because multiple physics properties are correctly learned by a single model. Two binary alloys, copper-gold (CuAu) and iron-platinum (FePt), were studied. Our results show that once the multitasking NNs are trained, they can estimate the material properties for a specific configuration hundreds of times faster than first-principles density functional theory calculations while retaining comparable accuracy. We used a simple measure based on the root-mean-squared errors (RMSE) to quantify the quality of the NN models, and found that the inclusion of charge density and magnetic moment as physical constraints leads to more stable models that exhibit improved accuracy and reduced uncertainty for the energy predictions.
Material scientists are increasingly adopting the use of machine learning (ML) for making potentially important decisions, such as, discovery, development, optimization, synthesis and characterization of materials. However, despite MLs impressive per
The need for advanced materials has led to the development of complex, multi-component alloys or solid-solution alloys. These materials have shown exceptional properties like strength, toughness, ductility, electrical and electronic properties. Curre
Uncertainty quantification in Artificial Intelligence (AI)-based predictions of material properties is of immense importance for the success and reliability of AI applications in material science. While confidence intervals are commonly reported for
Atomistic modeling of energetic disorder in organic semiconductors (OSCs) and its effects on the optoelectronic properties of OSCs requires a large number of excited-state electronic-structure calculations, a computationally daunting task for many OS
The phase diagram of oxygen is investigated for pressures from 50 to 130~GPa and temperatures up 1200 K using first principles theory. A metallic molecular structure with the $P6_3/mmc$ symmetry ($eta^{}$ phase) is determined to be thermodynamically