ﻻ يوجد ملخص باللغة العربية
We use the continuation and bifurcation package pde2path to numerically analyze infinite time horizon optimal control problems for parabolic systems of PDEs. The basic idea is a two step approach to the canonical systems, derived from Pontryagins maximum principle. First we find branches of steady or time-periodic states of the canonical systems, i.e., canonical steady states (CSS) respectively canonical periodic states (CPS), and then use these results to compute time-dependent canonical paths connecting to a CSS or a CPS with the so called saddle point property. This is a (high dimensional) boundary value problem in time, which we solve by a continuation algorithm in the initial states. We first explain the algorithms and then the implementation via some example problems and associated pde2path demo directories. The first two examples deal with the optimal management of a distributed shallow lake, and of a vegetation system, both with (spatially, and temporally) distributed controls. These examples show interesting bifurcations of so called patterned CSS, including patterned optimal steady states. As a third example we discuss optimal boundary control of a fishing problem with boundary catch. For the case of CPS-targets we first focus on an ODE toy model to explain and validate the method, and then discuss an optimal pollution mitigation PDE model.
A class of infinite horizon optimal control problems involving mixed quasi-norms of $L^p$-type cost functionals for the controls is discussed. These functionals enhance sparsity and switching properties of the optimal controls. The existence of optim
An abstract framework guaranteeing the local continuous differentiability of the value function associated with optimal stabilization problems subject to abstract semilinear parabolic equations subject to a norm constraint on the controls is establis
This paper is concerned with a stochastic linear-quadratic (LQ) optimal control problem on infinite time horizon, with regime switching, random coefficients, and cone control constraint. Two new extended stochastic Riccati equations (ESREs) on infini
We revisit and extend the Riccati theory, unifying continuous-time linear-quadratic optimal permanent and sampled-data control problems, in finite and infinite time horizons. In a nutshell, we prove that:-- when the time horizon T tends to $+infty$,
In this paper, we show existence and uniqueness of solutions of the infinite horizon McKean-Vlasov FBSDEs using two different methods, which lead to two different sets of assumptions. We use these results to solve the infinite horizon mean field type control problems and mean field games.