ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparing Dualities and Gauge Symmetries

96   0   0.0 ( 0 )
 نشر من قبل Sebastian De Haro
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss some aspects of the relation between dualities and gauge symmetries. Both of these ideas are of course multi-faceted, and we confine ourselves to making two points. Both points are about dualities in string theory, and both have the flavour that two dual theories are closer in content than you might think. For both points, we adopt a simple conception of a duality as an isomorphism between theories: more precisely, as appropriate bijections between the two theories sets of states and sets of quantities. The first point (Section 3) is that this conception of duality meshes with two dual theories being gauge related in the general philosophical sense of being physically equivalent. For a string duality, such as T-duality and gauge/gravity duality, this means taking such features as the radius of a compact dimension, and the dimensionality of spacetime, to be gauge. The second point (Sections 4, 5 and 6) is much more specific. We give a result about gauge/gravity duality that shows its relation to gauge symmetries (in the physical sense of symmetry transformations that are spacetime-dependent) to be subtler than you might expect. For gauge theories, you might expect that the duality bijections relate only gauge-invariant quantities and states, in the sense that gauge symmetries in one theory will be unrelated to any symmetries in the other theory. This may be so in general; and indeed, it is suggested by discussions of Polchinski and Horowitz. But we show that in gauge/gravity duality, each of a certain class of gauge symmetries in the gravity/bulk theory, viz. diffeomorphisms, is related by the duality to a position-dependent symmetry of the gauge/boundary theory.



قيم البحث

اقرأ أيضاً

In theories with discrete Abelian gauge groups, requiring that black holes be able to lose their charge as they evaporate leads to an upper bound on the product of a charged particles mass and the cutoff scale above which the effective description of the theory breaks down. This suggests that a non-trivial version of the Weak Gravity Conjecture (WGC) may also apply to gauge symmetries that are discrete, despite there being no associated massless field, therefore pushing the conjecture beyond the slogan that `gravity is the weakest force. Here, we take a step towards making this expectation more precise by studying $mathbb{Z}_N$ and $mathbb{Z}_2^N$ gauge symmetries realised via theories of spontaneous symmetry breaking. We show that applying the WGC to a dual description of an Abelian Higgs model leads to constraints that allow us to saturate but not violate existing bounds on discrete symmetries based on black hole arguments. In this setting, considering the effect of discrete hair on black holes naturally identifies the cutoff of the effective theory with the scale of spontaneous symmetry breaking, and provides a mechanism through which discrete hair can be lost without modifying the gravitational sector. We explore the possible implications of these arguments for understanding the smallness of the weak scale compared to $M_{Pl}$.
We develop the general theory of Noether symmetries for constrained systems. In our derivation, the Dirac bracket structure with respect to the primary constraints appears naturally and plays an important role in the characterization of the conserved quantities associated to these Noether symmetries. The issue of projectability of these symmetries from tangent space to phase space is fully analyzed, and we give a geometrical interpretation of the projectability conditions in terms of a relation between the Noether conserved quantity in tangent space and the presymplectic form defined on it. We also examine the enlarged formalism that results from taking the Lagrange multipliers as new dynamical variables; we find the equation that characterizes the Noether symmetries in this formalism. The algebra of generators for Noether symmetries is discussed in both the Hamiltonian and Lagrangian formalisms. We find that a frequent source for the appearance of open algebras is the fact that the transformations of momenta in phase space and tangent space only coincide on shell. Our results apply with no distinction to rigid and gauge symmetries; for the latter case we give a general proof of existence of Noether gauge symmetries for theories with first and second class constraints that do not exhibit tertiary constraints in the stabilization algorithm. Among some examples that illustrate our results, we study the Noether gauge symmetries of the Abelian Chern-Simons theory in $2n+1$ dimensions. An interesting feature of this example is that its primary constraints can only be identified after the determination of the secondary constraint. The example is worked out retaining all the original set of variables.
376 - James Hartle 2018
On the evening after Stephen Hawkings funeral in Cambridge on March 31, 2018 a dinner for attendees who had come from far away was hosted by Paul Shellard, the Director of the Centre for Theoretical Cosmology. I was asked me to speak for five minutes on my recollections of Stephen. This article is an slightly edited copy of my speaking text.
63 - S.Deser 2021
I review the meaning of General Relativity (GR), viewed as a dynamical field, rather than as geometry, as effected by the 1958-61 anti-geometrical work of ADM. This very brief non-technical summary, is intended for historians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا