ﻻ يوجد ملخص باللغة العربية
It was recently found that, under the action of the spin-orbit coupling (SOC) and Zeeman splitting (ZS), binary BEC with intrinsic cubic nonlinearity supports families of gap solitons, provided that the kinetic energy is negligible in comparison with the SOC and ZS terms. We demonstrate that, also under the action of SOC and ZS, a similar setting may be introduced for BEC with two components representing different atomic states, resonantly coupled by microwave radiation, while the Poisson equation accounts for the feedback of the two-component atomic wave function onto the radiation. The microwave-mediated interaction induces an effective nonlinear trapping potential, which strongly affects the purport of the linear spectrum in this system. As a result, families of both gap and embedded solitons (those overlapping with the continuous spectrum) are found, being chiefly stable. The shape of the solitons features exact or broken skew symmetry. In addition to fundamental solitons (whose shape may or may not include a node), a family of dipole solitons is constructed too, which are even more stable than their fundamental counterparts. A nontrivial stability area is identified for moving solitons in the present system, which lacks Galilean invariance. Colliding solitons merge into a single one.
Solitons play a fundamental role in dynamics of nonlinear excitations. Here we explore the motion of solitons in one-dimensional uniform Bose-Einstein condensates subjected to a spin-orbit coupling (SOC). We demonstrate that the spin dynamics of soli
We investigate dynamics of two-dimensional chiral solitons of semi-vortex (SV) and mixed-mode (MM) types in spin-orbit-coupled Bose-Einstein condensates with the Manakov nonlinearity, loaded in a dual-core (double-layer) trap. The system supports two
A simple and efficient method to create gap solitons is proposed in a spin-orbit-coupled spin-1 Bose-Einstein condensate. We find that a free expansion along the spin-orbit coupling dimension can generate two moving gap solitons, which are identified
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relativ
We study the dynamics of binary Bose-Einstein condensates made of ultracold and dilute alkali-metal atoms in a quasi-one-dimensional setting. Numerically solving the two coupled Gross-Pitaevskii equations which accurately describe the system dynamics