ﻻ يوجد ملخص باللغة العربية
We present FasterSeg, an automatically designed semantic segmentation network with not only state-of-the-art performance but also faster speed than current methods. Utilizing neural architecture search (NAS), FasterSeg is discovered from a novel and broader search space integrating multi-resolution branches, that has been recently found to be vital in manually designed segmentation models. To better calibrate the balance between the goals of high accuracy and low latency, we propose a decoupled and fine-grained latency regularization, that effectively overcomes our observed phenomenons that the searched networks are prone to collapsing to low-latency yet poor-accuracy models. Moreover, we seamlessly extend FasterSeg to a new collaborative search (co-searching) framework, simultaneously searching for a teacher and a student network in the same single run. The teacher-student distillation further boosts the student models accuracy. Experiments on popular segmentation benchmarks demonstrate the competency of FasterSeg. For example, FasterSeg can run over 30% faster than the closest manually designed competitor on Cityscapes, while maintaining comparable accuracy.
Semantic segmentation remains a computationally intensive algorithm for embedded deployment even with the rapid growth of computation power. Thus efficient network design is a critical aspect especially for applications like automated driving which r
BiSeNet has been proved to be a popular two-stream network for real-time segmentation. However, its principle of adding an extra path to encode spatial information is time-consuming, and the backbones borrowed from pretrained tasks, e.g., image class
Semantic segmentation requires both rich spatial information and sizeable receptive field. However, modern approaches usually compromise spatial resolution to achieve real-time inference speed, which leads to poor performance. In this paper, we addre
In deep CNN based models for semantic segmentation, high accuracy relies on rich spatial context (large receptive fields) and fine spatial details (high resolution), both of which incur high computational costs. In this paper, we propose a novel arch
Designing a lightweight semantic segmentation network often requires researchers to find a trade-off between performance and speed, which is always empirical due to the limited interpretability of neural networks. In order to release researchers from