ﻻ يوجد ملخص باللغة العربية
Reinforcement learning (RL) algorithms have been successfully applied to a range of challenging sequential decision making and control tasks. In this paper, we classify RL into direct and indirect RL according to how they seek the optimal policy of the Markov decision process problem. The former solves the optimal policy by directly maximizing an objective function using gradient descent methods, in which the objective function is usually the expectation of accumulative future rewards. The latter indirectly finds the optimal policy by solving the Bellman equation, which is the sufficient and necessary condition from Bellmans principle of optimality. We study policy gradient forms of direct and indirect RL and show that both of them can derive the actor-critic architecture and can be unified into a policy gradient with the approximate value function and the stationary state distribution, revealing the equivalence of direct and indirect RL. We employ a Gridworld task to verify the influence of different forms of policy gradient, suggesting their differences and relationships experimentally. Finally, we classify current mainstream RL algorithms using the direct and indirect taxonomy, together with other ones including value-based and policy-based, model-based and model-free.
Much of the current work on reinforcement learning studies episodic settings, where the agent is reset between trials to an initial state distribution, often with well-shaped reward functions. Non-episodic settings, where the agent must learn through
In most practical applications of reinforcement learning, it is untenable to maintain direct estimates for individual states; in continuous-state systems, it is impossible. Instead, researchers often leverage state similarity (whether explicitly or i
In this paper, we present a new class of Markov decision processes (MDPs), called Tsallis MDPs, with Tsallis entropy maximization, which generalizes existing maximum entropy reinforcement learning (RL). A Tsallis MDP provides a unified framework for
Deep reinforcement learning algorithms have been successfully applied to a range of challenging control tasks. However, these methods typically struggle with achieving effective exploration and are extremely sensitive to the choice of hyperparameters
We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperfo