ﻻ يوجد ملخص باللغة العربية
(abridged) Kepler-278 and Kepler-391 are two of the three evolved stars known to date on the RGB to host multiple short-period transiting planets. Moreover, these planets are among the smallest discovered around RGB stars. Here we present a detailed stellar and planetary characterization of these remarkable systems. Based on high-quality spectra from Gemini-GRACES for Kepler-278 and Kepler-391, we obtained refined stellar parameters and precise chemical abundances for 25 elements. Also, combining our new stellar parameters with a photodynamical analysis of the Kepler light curves, we determined accurate planetary properties of both systems. The precise spectroscopic parameters of Kepler-278 and Kepler-391, along with their high $^{12}mathrm{C}/^{13}mathrm{C}$ ratios, show that both stars are just starting their ascent on the RGB. The planets Kepler-278b, Kepler-278c, and Kepler-391c are warm sub-Neptunes, whilst Kepler-391b is a hot sub-Neptune that falls in the hot super-Earth desert and, therefore, it might be undergoing photoevaporation of its outer envelope. The high-precision obtained in the transit times allowed us not only to confirm Kepler-278cs TTV signal, but also to find evidence of a previously undetected TTV signal for the inner planet Kepler-278b. From the presence of gravitational interaction between these bodies we constrain, for the first time, the mass of Kepler-278b ($M_{mathrm{p}}$ = 56 $substack{+37-13}$ $M_{mathrm{oplus}}$) and Kepler-278c ($M_{mathrm{p}}$ = 35 $substack{+9.9 -21} $ $M_{mathrm{oplus}}$). Finally, our photodynamical analysis also shows that the orbits of both planets around Kepler-278 are highly eccentric ($e sim$ 0.7) and, surprisingly, coplanar. Further observations of this system are needed to confirm the eccentricity values presented here.
Most Sun-like stars in the Galaxy reside in gravitationally-bound pairs of stars called binary stars. While long anticipated, the existence of a circumbinary planet orbiting such a pair of normal stars was not definitively established until the disco
It has been known for a decade that hot stars with hot Jupiters tend to have high obliquities. Less is known about the degree of spin-orbit alignment for hot stars with other kinds of planets. Here, we re-assess the obliquities of hot Kepler stars wi
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the
We present a comprehensive catalog of cool (period $Pgtrsim 2,mathrm{yr}$) transiting planet candidates in the four-year light curves from the prime kepler mission. Most of the candidates show only one or two transits and have largely been missed in
Fewer than 20 transiting Kepler planets have periods longer than one year. Our early search of the Kepler light curves revealed one such system, Kepler-1654 b (originally KIC~8410697b), which shows exactly two transit events and whose second transit